Lithium-Ion Battery Charge Control Monolithic IC MM1581

Outline

This is a lithium-ion battery charge control IC. It incorporates constant-voltage and constant-current circuits for easy implementation of lithium-ion battery charge. It includes functions to disable charging to overdischarged batteries and disable charging due to abnormal temperature, etc. It is also equipped with a 2-channel LED driver to allow the charge status to be displayed.

Features

- 1. Operating supply voltage
- 2. Operating ambient temperature -20~85°C
- 3. Current consumption
- 4. Low voltage detection voltage
- 5. BAT pin output voltage
- 6. Recharge detection voltage
- 7. Precharge detection voltage 3.07V typ.
- 8. Fast-charge current setting Rsense=0.256V/IqcHg Example: For 0.512A, 0.256V/0.512A=0.5Ω (Rsence)

 Precharge current
 0.026V/Rsence=0.026/0.5Ω=0.052A

1.54V typ. (rank A) 2.60V typ. (rank 🛐

4.8~15.0V

7.0mA typ.

4.20±0.03V

3.99V typ.

- Full-charge adjustable for rank A Full-charge current
- 9. Recharge delay time
- 10. Full-charge detection delay time
- 11. Temperature detection delay time
- 12. LED switching delay time

Example: When ADJ = 0.25V, 5 * $0.\Omega$ *full-charge current=0.25V, full-charge current=0.1A 0.48s (C1=0.1µF) 0.52s (C2=0.1µF) 0.049s (C3=0.1µF) 1.0s (C2=0.1µF)

Package

TSOP-16A

Application

For lithium-polymer battery protection circuits

Pin Assignment

16	□ 15	□ 14	□ 13	□ 12	□ 11	10	9
1	2	3 □ TS	4 D SOF	5 □ 2-16	6 	7	8

1	TDET	9	C1
2	C3	10	C2
3	ADJ	11	N. C
4	VREF	12	GND
5	Vcc	13	BAT
6	N. C	14	CS-
7	LEDR	15	CS+
8	LEDG	16	CNT

Block Diagram

Pin Description

Pin no.	Pin name	I/O	Function	Internal equivalent circuit diagram
1	TDET	Input	Temperature detection and battery connection detection pin (used for both)	Vcc
2	C3	Input	Temperature detection delay. Time setting pin (TPd=49ms C3=0.1µF)	
3	ADJ	Input	Charging detection voltage setting pin (typ.=49ms C3=0.1µF)	3 GND

Pin no.	Pin name	I/O	Function	Internal equivalent circuit diagram
4	VREF	Output	Reference voltage output in (typ.=4.53V)	Vcc
5	Vcc	Input	Power voltage	
6 7	N. C LEDR	N.C Output	LED connection pin Lights up during charging (open collector output)	Vcc 7
	2Ô			GND

Pin no.	Pin name	I/O	Function	Internal equivalent circuit diagram
8	LEDG	Input	LDE connection pin when charging is complete (open collector output)	B GND
9	C1	Input	Current detection delay time setting pin (typ.=0.48s C3=1.0µF)	
10	C2	Input	Current detection delay time setting pin (typ.=0.48s C2=1.0µF)	(10 (10 GND

Pin no.	Pin name	I/O	Function	Internal equivalent circuit diagram
11	N.C	N. C		
12	GND		GND pin	(12)
13	BAT	Input	Battery voltage detection pin	13 - VCC GND
14	CS-	Input	Charging current detection pin (connect to low detection resistance side)	
15	CS+	Input	Charging current detection pin (connect to high detection resistance side)	15 GND

Pin no.	Pin name	I/O	Function	Internal equivalent circuit diagram
16	CNT	Output	Output pin (open collector output)	Vcc (1 GND
\bsolut	e Maxi	mum F	Ratings (Ta=25°C)	

Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Ratings	Units
Storage temperature	Tstg	40~+150	°C
Operating temperature	Topr	-20~+85	°C
Supply voltage	VIN	-0.3~+16	V
CNT pin output current	Tent	30	mA
TDET pin output voltage	Vtin	-0.3~Vcc	V
Allowable loss	Pd	400 (Not attached)	mW

Recommended Operating Conditions (Ta=25°C)

Item	Symbol	Ratings	Units
Operating temperature	Topr	-20~+85	°C
CNT current	1сит	0~30	mA
Operating voltage	Vop	4.8~15.0	V

Electrical Characteristics (Except where noted otherwise, Ta=25°C, Vcc=12V, VSENSE=3.6V, C1=1.0µF, C2=1.0µF, C3=0.1µF)

Item	Symbol	Measurement conditions	Measurement Circuit	Min.	Тур.	Max.	Units
Consumption current	Icc	When LED OFF	a	4	7	10	mA
Reference voltage	Vref		a	4.30	453	4.76	V
Low voltage detection voltage	VLV	Vват: L→H	a	1.44	1.54	1.64	V
Pre-charge detection voltage	VP	Vват: L→H	a	2.97	3.07	3.17	V
BAT pin output voltage	VBAT		a	4.17	4.20	4.23	V
Re-charge detection voltage	VR	VBAT: H→L	a	3.89	3.99	4.09	V
BAT pin input current	Ibat		b	-2		2	μA
Current Limit 1	VIL1	1.54V < Battery voltage <3. 07V Pre-charge	a	15	26	37	mV
Current Limit 2–1	Vп2-1	$5.0V \le Vcc \le 8.0V$ $3.07V \le Battery voltage \le 4.2V$ Quick charge	a	232	256	280	mV
Current Limit 2–2	V112-2	8.0V <vcc 15.0v<br="" ≤="">3.07V ≤ Battery voltage ≤ 4.2V Quick charge</vcc>	a	237	257	275	mV
Full charge detection voltage 1	VFl	Vadj=0.13V	а	15	26	37	mV
Full charge detection voltage 2	VF2	Vadj=0.5V	а	75	100	125	mV
CS+ pin input current	Ics+	Vcs+ -3.6V	а		60	85	μA
CS- pin input current	Ics-	Vcs-=3.6V	а		60	85	μA
LED R pin output voltage	VLEDR	ILED R=10mA	b			0.4	V
LED G pin output voltage	VLEDG	ILED G=10mA	b			0.4	V
Battery temperature detection voltage H1	VTH1		а	3.11	3.21	3.31	V
Battery temperature detection voltage L1	VTL1	Vrof-4 52V	а	1.39	1.49	1.59	V
Battery temperature detection voltage H2	VTH2	VICI-4.00V	а	3.13	3.23	3.33	v
Battery temperature detection voltage L2	VTH2		а	1.49	1.59	1.69	v
TDET pin input bias current	Iт		b	-1.0			μA
CNT pin output voltage	VCNT	ICNT=20mA	b		1.0	2.0	V
CNT pin leak current	Icnt	Vout=15V	b			1.0	μA
Re-charge detection delay time	tdcl	Re-charge time C1=1.0µF	с	0.34	0.48	0.62	s
Connection detection time 1	tdbdet	4.2V constant voltage output time C2=1.0µF	c	0.37	0.52	0.67	s
Fullcharge detection delay time	tdidet	C2=1.0µF	c	0.37	0.52	0.67	s
LED switching delay time	tdiled	C2=1.0µF	c	0.71	1.00	1.3	s
Discharge time	tdchg	C2=1.0µF (after current detection)	c	13	41		ms
Temperature detection delay time	tdc3	C3=0.1µF	с	34	49	64	ms

Measuring Circuit

Measuring circuit A

Note SW1 = b only during BAT pin output voltage measurement

Rorducts

Measuring circuit B VCNT V а SW2 20mA IT VTIN \mathcal{T} 1 16 (A)VCNT \rightarrow o– b (A) ICNT C1=1.0µF -A-ICS+ 2 15 ┥┝ Æ Vcs+ Vadj 3 14 ⊣⊦ (A)4+ Æ Vcs-ICS-VBAT /// C4=1.0µF 4 13 (A)┥┝ Æ + Vcc IBAT Æ 1+ 5 12 +C5=10µF 6 11 V \mathcal{H} VLEDR 7 10 \bigotimes Æ 1.0µF 2-10mA ---8 -CC 9 10mA -C3=0.1µF / V Ţ,

Note SW2 = b only during CNT pin gain leak current measurement

Porducts

Measuring circuit C Vcc ⊣⊦ Æ R1 680Ω $\sim \sim$ VT R2 240Ω R 1 16 Q1 \rightarrow R6 C1=1.0µF 0.1µF 2 ┥┟ 15 \rightarrow R3 100Ω Ş R4 ≷ 1Ω Vadj 3 14 ┥┝ \rightarrow D1 \bigtriangledown C4=1.0µF 4 13 \rightarrow **+** Æ Current probe 5 12 \rightarrow Vcc VBAT C1=10µF Æ 6 11 VBAT oscilloscope 7 10 $\sim \sim$ 1kΩ C2=1.0µF 8 $\sim \sim \sim$ 9 $1 \mathrm{k} \Omega$ C3=0.1µF

Application Circuit

Operation

12-1 Charging operation

Charging is prohibited in the following cases.

- 1. AC adaptor or battery is not connected properly.
- 2. TDET pin voltage is outside the range from battery temperature detection voltage L1 to battery temperature detection voltage H1.

If neither of the above problems exists, charging starts.

12-2 Battery voltage check operation

When potential within the range from battery temperature detection voltage L1 to battery temperature detection voltage H1 is impressed on the TDET pin, then after temperature detection delay time, V_{BAT} output voltage is 4.2V. Then, after 1.15 seconds (when C2 = 2.2µF) output voltage is switched to 1.46V, battery voltage is detected and charging starts.

(Voltage detection is not performed during this time.)

Also, during 4.2V constant voltage output, current detection resistance voltage drop is limited to 256mV.

12-3 Abnormal battery detection

•Charging is stopped if, after battery voltage check, the battery is deemed abnormal because battery voltage goes below low voltage detection voltage.

12-4 Pre-charge operation

•Charging is done by pre-charge current when, after battery voltage check, battery voltage is below low voltage detection voltage (VLV).

12-5 Full charge operation

•When battery voltage rises and BAT pin voltage reaches pre-charge detection voltage (VP), the battery is charged by full charging current. The standard value for full charging current is determined by the value obtained by dividing current limit 1 (VL1) by the external resistance between CS+ and CS-.

•When battery voltage rises, the operation switches from constant current charging to constant voltage charging when BAT pin voltage approaches BAT pin output voltage (VBAT).

After switching to constant voltage charging, charging current gradually diminishes. When charging current goes below the value obtained by dividing full charge detection voltage (V_F) by the external resistance between CS + -CS, charging is completed after full charge detection delay time and the LED G pin open collector NPNP transistor goes on.

(LED G stays lit except when (1) AD adaptor is removed, or (2) when outside battery temperature detection voltage range (including removal of battery).)

If battery voltage is already at BAT pin voltage when charging starts, charging is completed after full charge detection delay time, and the LED G pin open collector NPN transistor goes on.

12-6 Re-charge operation

•After full charge detection, battery voltage drops from charging completed state, and re-charge starts when it goes below re-charge detection voltage.

12-7 Temperature monitoring function

•The potential divided from VREF by the external resistor and thermistor is monitored by the TDET pin. •When a thermistor is not used, a resistor can be connected to enable charging, but temperature protection will no longer operate. Battery open detection assumes a removable thermistor in the battery pack. A battery open detection circuit would be required if a thermistor is not used.

12-8 Charging state verification

•The open collector NPN transistor inside LEDR normally goes on during pre-charging and full charging operations. When a PULL UP connection is made to LEDR via the red LED and a resistor, pre-charging and full charging can be verified by the red LED lighting up and staying lit.

12-9 Charging complete verification

When full charge is detected, the open collector NPN transistor inside the LEDR pin goes off after full charge delay time elapses, and the open collector NPNP transistor inside the LEDG pin goes on. Full charge can be verified by making pull-up connections between the LEDR pin and red LED and LEDG pin and green LED via resistors and checking that the red LED is off and the green LED is flashing,

12-10 Check charging prohibited state

•For the following charging prohibited states, the LED G pin and LED R pin open collector NPN transistors remain off. The LEDs do not light up.

- 1. Battery is not connected properly.
- 2. AC adapter is not connected properly.
- 3. Battery temperature is outside charging start temperature range.

12-11 Recovery after charging prohibited state

•The conditions are as follows for recovery after charging prohibited state:

- 1. Cut connection to charger and re-connect.
- 2. Cut battery connection and re-connect.
- 12-12 Quick charge and charging complete settings
 - 1. Setting current value (lqchg) for quick charge

Quick charge current value lcqchg depends on sensing resistor resistance value Rsense. Insert the desired quick charge value lqchg into the following formula and set the sensing resistor value.

Rsense (
$$\Omega$$
) = $\frac{\text{Charging current setting voltage 2}}{\text{Iqchg (mA)}} = \frac{256\text{mV}}{\text{Iqchg (mA)}}$

Pre-charge current at this time becomes the following value.

Pre-charge current (A)=
$$\frac{\text{charging current setting voltage 1}}{\text{Rsense }(\Omega)} = \frac{26\text{mV}}{\text{Rsense }(\Omega)}$$

2. Setting charging complete detection current value (Icomp)

Charging complete detection current value lcomp depends on sensing resistor resistance value Resense and ADJ pin voltage Vadj. Insert the desired charging complete detection current value and the sensing resistor value set in 1. into the following formula to set ADJ pin voltage.

Vadj (V) =5 \times Rsense (Ω) \times Icomp (A) (Note) is IC internal fixed value Note

The graph below shows examples of ADJ pin voltage setting and the relationship between charging complete detection current (Icomp) and ADJ pin voltage (Vadj). Please use as reference for sensing resistor and ADJ pin voltage settings.

ADJ pin voltage setting examples

Quick charge	256mA	450	mA	512	mA	700	mA		
Sensing resistor Rsense	1Ω	0.5	6Ω	0.5	0Ω	0.3	6Ω		
Charging complete current Icomo	26mA	100mA	130mA	100mA	130mA	100mA	130mA		
ADJ pin voltage	125mV	280mV	364mV	250mV	325mV	180mV	234mV		
Vadj=5×Rs×Icomo	125111 V	200111	304111	200111	525mV	100111	2041117		
Use several $10k\Omega$ for ADJ re	Use several 10k Ω for ADJ resistor (R, R2) total resistance value.								
						\mathbf{N}			
					\sim				
				Ć					
)				
			• • •						
			\mathbf{V}						
		N							
×C									

Flow Chart

Timing Chart

Characteristics (Except where noted otherwise, Ta=25°C, Vcc=12V, VSENSE=3.6V, C1=1.0µF, C2=1.0µF, C3=0.1µF) Consumption current characteristic Standard voltage characteristic 20 18 6.0 Output voltage (V) 5.0 16 14 lcc (mA) 4.0 12 10 3.0 8 2.0 6 4

