2.5µA typ.

0.20µA typ

±0.3µA max 4.35V±50mV

1.5s typ.

Protection for Lithium-Ion Batteries (for double protection) Monolithic IC MM1373 February 17, 1997

Outline

This IC detects overcharging while charging lithium-ion batteries. It is designed for use with 3 or 4-cell batteries, and detects the battery voltage for each cell. An overcharge detection delay time can be set using an external capacitor. The overcharge detection signal output is NPN open collector and goes low when overcharging is detected. MM1451 is available for 1 to 3 cells. Overcharge detection signal output is PNP output and goes high when overcharging is detected.

VCEL=3.8V

VCEL=2.3V

VCEL=3.8V

CT=0.22µF

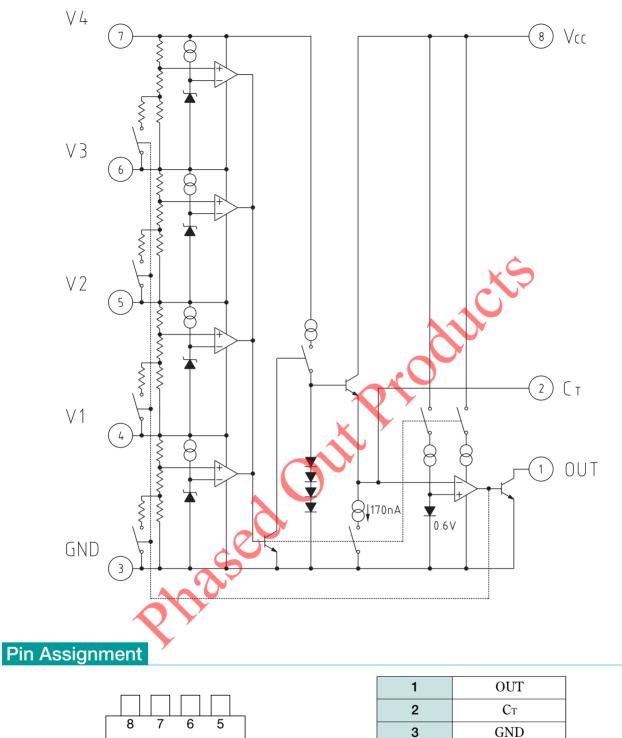
Type A

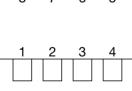
Features

- 1. Consumption current
- 2. Consumption current
- 3. Input current between cells
- 4. Overcharge detection voltage
- 5. Overcharge detection delay time
- 6. Detection voltage can be changed to accommodate customer needs

Package

SOP-8C SOP-8E


Applications


For double protection for 3 to 4-cell lithium-ion batteries

Overcharge Detection

MM1373	Detection voltage	Hysteresis
Rank A	4.350V	250mV
Rank C	4.225V	None
Rank D	4.130V	None
Rank E	4.450V	100mV

Block Diagram

SOP-8C, SOP-8E

2	Ст
3	GND
4	V1
5	V2
6	V3
7	V4
8	Vcc

Pin Description

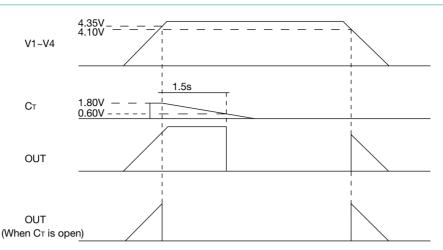
Pin no.	Pin name	Function	Internal equivalent circuit diagram
1	OUT	Reset output pin	
2	Ст	Delay capacitance pin	2 100kΩ 100kΩ 100kΩ 100kΩ 100kΩ 100kΩ 100kΩ 100kΩ
3	GND	GND pin	
4	V1	Cell 1 power supply	
5	V2	Cell 2 power supply	
6	V3	Cell 3 power supply	6
7	V4	Cell 4 power supply	
8	Vcc		-

Absolute Maximum Ratings

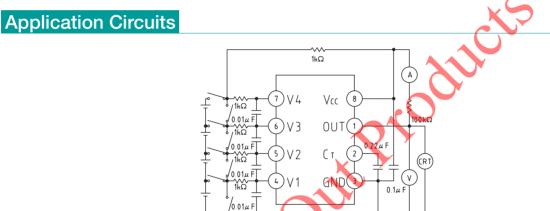
Item	Symbol	Ratings	Units	
Vcc input voltage	Vcc			
V4 input voltage *1	V4			
V3 input voltage *1	V3	-0.3~24	V	
V2 input voltage *1	V2	-		
V1 input voltage *1	V1	•		
C⊤ pin voltage *2	Vct	-0.3~24	V	
Vout pin voltage	Vout	-0.3~24	V	
Allowable loss	Pd	300	mW	
Operating temperature	Topr	-20~+80	°C	
Storage temperature	Tstg	-40~+125	°C	

*1 $V_{CC} \ge V4 \ge V3 \ge V2 \ge V1 \ge -0.3$

*2: A current no greater than 100µA should be passed through pin Ct.


Recommended Operating Conditions

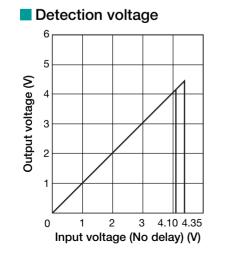
Item	Symbol	Ratings	Units
Input voltage between cells 1	Vop1	2.0~4.35	V
Vcc input voltage	Vop2	4.0~18	V


Electrical Characteristics (Except Where noted outcombo, 19-20 4, MM1373AF (Except where noted otherwise, Ta=25°C, VCEL=V4-V3=V3-V2=V2-

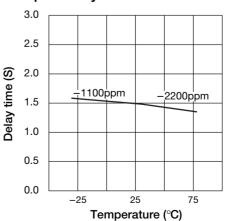
Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
Consumption current 1		VCEL=3.8V		2.5	3.5	μA
Consumption current 2	1 2	VCEL=3.8V, VCC=VCEL \times 4		1.5	2.5	μA
Consumption current 3	l3	VCEL=2.3V		0.20	0.30	μA
Consumption current 4	4	VCEL=2.3V, VCC=VCEL \times 4		0.60	0.90	μA
Pin I/O current between cells	13	VCEL=3.8V (V4, V3, V2, V1 side)		±0.0	±0.3	μA
Overcharge detection voltage	Vs	V _{CEL} =L→H, Ta= -20 ~+70°C	4.30	4.35	4.40	V
Hysteresis voltage	HSY	$V_{CEL}=L \rightarrow H \rightarrow L$	0.20	0.25	0.30	V
Overcharge detection delay time	TPLH	Ст=0.22µF	1.0	1.5	2.0	s
Output voltage L	Vol	IL=100µA			0.4	V
Output leakage current	ILEAK	VCEL=3.8V, VOUT=24V			0.1	μA

Timing Chart

Note : When pin Ct is shorted or left open, the output goes low when overcharging is detected.


- Note 1: By shorting each cell, two-, three- and four-cell series can be accommodated. A V4 cell should always be connected. If the V4 cell is shorted, the chip may not function correctly.
- Note 2: The input resistance for each cell should be $1k\Omega$ or lower. Also, please select the appropriate value for the external capacitor according to the usage environment.

7


Note 3: Connect in the following order when connecting the battery: $GND \rightarrow V4$ and $Vcc \rightarrow V2 \rightarrow V1$ or V3. However, when turning power on, output may go on momentarily. If there is a problem of mis-output when turning power on, connect the Vcc pin last.

(Connecting the $\sqrt[V]{cc}$ pin last does away with mis-output and results in normal operation.)

Characteristics

Output delay time

