

One cell lithium-ion/lithium-polymer battery secondary protection IC

MM3734 series

Outline

The MM3734 series are voltage monitor ICs for rechargeable Lithium-ion or Lithium-polymer batteries secondary protection, using a high voltage CMOS process. 1-cell Lithium-ion or Lithium-polymer battery can be detected overcharge state. Internal circuit is composed of voltage detectors, reference voltage sources, an oscillator, a counter circuit and logical circuits.

Features

(Unless otherwise specified,Ta=25°C)

1) Range and accuracy of detection/release voltage

• Overcharge detection voltage 4.0V to 5.0V, 5mV steps Accuracy±20mV

• Hysteresis voltage 0V to 1.0V, 50mV steps

However, "Detection voltage-Hysteresis voltage<4.0V" is disabled.

2) Range of detection delay time

• Overcharge detection delay time Selection from 0.25s, 1.02s, 2.048s, 4.096s

3) Low current consumption

• Normal mode Typ. 1.5uA, Max. 3.0uA

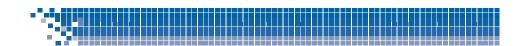
• Stand-by mode Max. 0.8uA

4) Package type

• SON-6C $1.60 \times 2.00 \times 0.55$ [mm]

Pin explanations

SON-6C	Pin No.	Symbol	l Function		
	1	NC	No connection.		
1 □ ● □ 6	2	OUT	Output of detecting voltage. Output type is CMOS.		
	3	DS	Delay shorten terminal.		
	4 VSS VSS terminal. Connected to ground.		VSS terminal. Connected to ground.		
3 🗍 📙 4	5	VDD	VDD terminal. Connected to IC substrait.		
	6	NC	No connection.		


Mitsumi Electric CO.,LTD.

Semiconductor Business Division Strategy Engineering Department tel:+81-46-230-3470

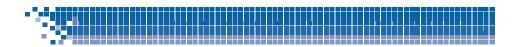
🛮 All brand names, logos, product names, trade names and service names described here are trademarks or registered trademarks of their respective companies or organizations.

- Any products mentioned in this leaflet are subject to any modification in their appearance and others for improvements without prior notification.
- The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications

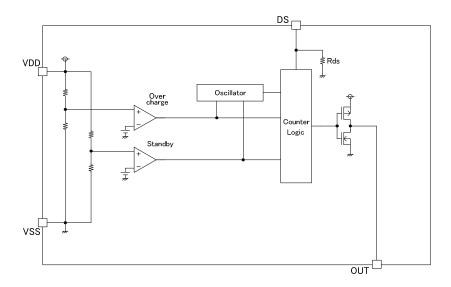
Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply voltage	VDD	-0.3	12	V
DS terminal input voltage	VDS	VSS-0.3	VDD+0.3	V
OUT terminal voltage	VOUT	VSS-0.3	VDD+0.3	V
Storage temperature	Tstg	-55	125	${\mathbb C}$

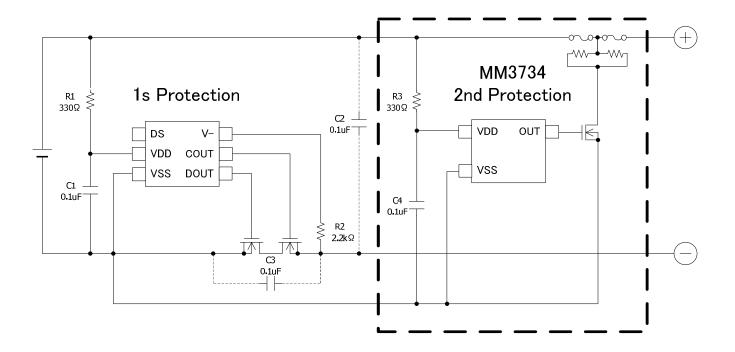
Recommended Operating Conditions


Parameter	Symbol	Min	Max	Unit
Operating ambient temperature	Topr	-40	85	$^{\circ}$
Operating voltage	Vop	1.5	5.5	V

Electrical characteristics


(Unless otherwise specified, Ta=25°C)

(Offices outerwise specified, fu=25 c)							
Parameter	Symbol	Note	Min	Тур	Max	Unit	
Input/Output voltage							
OUT L level output voltage	VoL	Icout=-30uA, VDD=4.0V	-	0.1	0.5	V	
OUT H level output voltage	VoH	Icout=30uA, VDD=Vdet+0.1V	VDD-0.5	VDD-0.1	-	V	
Current consumption							
Current consumption	Idd	VDD=4.0V	-	1.5	3.0	uA	
Current consumption at stand-by	Is	VDD=3.4V	-	0.6	0.8	uA	
		Detection/Release voltage	ge				
Overcharge detection voltage	Vdet	Ta=+25℃	Typ-0.020	Vdet	Typ+0.020	· V	
		Ta=-5~+60℃	Typ-0.025		Typ+0.025		
Overcharge release voltage	Vrel	Ta=+25℃	Typ-0.030	Vrel	Typ+0.030	V	
		Ta=-5~+60℃	Typ-0.050	vrei	Typ+0.050		
Standby mode change voltage	Vsta		3.7	3.8	3.9	V	
Detection/Release delay time							
Overcharge detection delay time	tVdet		Typ*0.8	tVdet	Typ*1.2	S	
Overcharge release delay time	tVrel		12.8	16.0	19.2	ms	



Block diagram

Typical application circuit

R3 and C4 stabilize a supply voltage ripple. However, the detection voltage rises by the current of penetration in IC of the voltage detection when R3 is enlarged, and the value of R3 is adjusted to 1kohm or less. Moreover, adjust the value of C4 to 0.01uF or more to do the stability operation, please.