

1 to 3 cells lithium-ion/lithium-polymer battery secondary protection IC

MM3563 series

Outline

MM3563 series are secondary protection IC using high voltage CMOS process for overcharge protection of the rechargeable lithium-ion or lithium-polymer battery. The high accuracy overcharge detection of each cell of the rechargeable 1 to 3-cell Lithium-ion or Lithium-polymer battery is possible. Each of these IC composed of four voltage detectors, reference voltage sources, oscillator, counter circuit and logical circuits. The ultra-small package SSON-6A is used to minimize footprints.

_		-	
	02	t	rac
	Ga	ιч	

accuracy of dataction (rolance valt 1) Rang

ange and accuracy of detection/release	voitage	
 Overcharge detection voltage 	4.0V to 4.5V, 5mV steps	Acc

Hysteresis voltage

50mV to 500mV

curacy±20mV Accuracy±50mV~100mV

(Unless otherwise specified,Ta=25℃)

- 2) Range of detection delay time
 - Overcharge detection delay time $1 \text{ms to} (1 \text{ms} \times 2^{n1}) + (1 \text{ms} \times 2^{n2})$

*n1 and n2 can select two arbitrary integers between 0 to 13. (However $n1 \neq n2$)

3) Low current consumption

Current consumption1 (VCELL=4.0V)	Typ. 1.5uA, Max. 3.0uA
Current consumption2 (VCELL=2.3V)	Tvp. 0.15uA, Max. 0.30uA

4) Package type

 SSON-6A 	2.00 × 1.80 × 0.75 [mm]
・ SOT-26A	2.90 × 2.80 × 1.15 [mm]

MinebeaMitsumi

Mitsumi

Mitsumi Electric CO., LTD.

يحودون ومحصور ومرودي ككون ويويدون ويرود ومروكي

Passion to Create Value through Difference https://mtm-sec.mitsumi.co.jp/web/ic/

Semiconductor Business Division Strategy Engineering Department | tel:+81-46-230-3470

All brand names, logos, product names, trade nam es and service n ibed here are trademarks or registered trademarks of their re oducts mentioned in this leaflet are subject to any modification in their appearance and others for imp aente without prior notifi

The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specification

SSON-6A	Pin No.	Symbol	Function
	1	VDD	The input terminal of the power supply of IC
	2	V3	The input terminal of the positive voltage of V3 cell
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	V2	The input terminal of the positive voltage of V2 cell, and the negative voltage of V3 cell
	4	V1	The input terminal of the positive voltage of V1 cell, and the negative voltage of V2 cell
	5	VSS	The input terminal of the ground of IC, and the negative voltage of V1 cell
	6	OV	Output of over charge detection. Output type is CMOS

SOT-26A	Pin No.	Symbol	Function
6 5 4	1	V2	The input terminal of the positive voltage of V2 cell, and the negative voltage of V3 cell
	2	V3	The input terminal of the positive voltage of V3 cell
	3	VDD	The input terminal of the power supply of IC
	4	OV	Output of over charge detection. Output type is CMOS
	5	VSS	The input terminal of the ground of IC, and the negative voltage of V1 cell
1 Z J	6	V1	The input terminal of the positive voltage of V1 cell, and the negative voltage of V2 cell

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply voltage	V _{DDMAX}	-0.3	18.0	V
OV pin input voltage	V _{OMAX}	VSS-0.3	VDD+0.3	V
Storage temperature	T _{STG}	-55	125	°C

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Operating ambient temperature	Topr	-40	110	°C
Operating voltage	Vop	2.0	18.0	V

Electrical characteristics

(Unless otherwise specified,Ta=25°						a=25℃)	
Parameter	Symbol	Note	Min	Тур	Max	Unit	
Output current							
OV pin source current	$I_{SO}O_V$	V _{OV} =VIN-0.5V	250	-	-	uA	
OV pin sink current	$I_{\rm SI}O_{\rm V}$	V _{OV} =0.5V	250	-	-	uA	
		Current consumption					
Consumption current 1	I_{DD1}	VCELL=4.0V	-	1.5	3.0	uA	
Consumption current 2	I_{DD2}	VCELL=2.3V	-	0.15	0.30	uA	
V2 pin input current	I _{V2}	VCELL=3.5V	-300	-	300	nA	
V1 pin input current	I _{V1}	VCELL=3.5V	-300	-	300	nA	
		Detection/Release volta	ge				
		Ta=+25℃	Тур-0.020		Typ+0.020		
Overcharge detection voltage	$V_{\text{CELL}}U$	Ta=0∼+60℃	Typ-0.025	$V_{\text{CELL}}U$	Typ+0.025	V	
		Ta=-40∼+110℃	Typ-0.070		Typ+0.070		
Overcharge release voltage	V _{CELL} O		Typ-0.05~0.10	$V_{CELL}O$	Typ+0.05~0.10	V	
Standby Voltage	Vst		2.4	3.0	3.6	V	
Detection delay time							
Overcharge detection dead time	tovd		Typ*0.7	tovd	Typ*1.3	S	

Block diagram

Typical application circuit

•When using it for 3 cells

%1.constant of the mark is a standard.

%2.The voltage change becomes big according to an excessive current, and the current of the bias in IC is turned off temporarily. It is this influence, and there is a possibility that the output logic becomes unstable. In that case, please set the time constant of CR connected with the power supply terminal so that the variation in power source may become $1V/100\mu$ sec or more.