

One-cell Li-ion/Li-polymer battery protection IC

MM3511 series

Outline

The MM3511 series are protection IC using high voltage CMOS process for overcharge, overdischarge and overcurrent protection of the rechargeable Lithium-ion or Lithium-polymer battery. The overcharge, overdischarge, discharging overcurrent, charging overcurrent, and short protection of the rechargeable one-cell Lithium-ion or Lithium-polymer battery can be detected. Each of these IC composed of four voltage detectors, short detection circuit, reference voltage sources, oscillator, counter circuit and logical circuits.

Features

1) Range and accuracy of detection/release voltage

- Overcharge detection voltage
- Overcharge release voltage
- Overdischarge detection voltage
- Overdischarge release voltage
- Discharging overcurrent detection voltage
- Charging overcurrent detection voltage
- Short detection voltage

2) Range of detection delay time

- Overcharge detection delay time
- Overdischarge detection delay time
- · Discharging overcurrent detection delay time
- Charging overcurrent detection delay time
- Short detection delay time
- 3) 0V battery charge function
- 4) Low current consumption
 - \cdot Normal mode
 - Stand-by mode
- 5) Package type
 - · SSON-6A
 - · SSON-6J
 - · SON-6C

(Unless otherwise specified,Ta=25℃)

3.6V to 5.0V, 5mV steps 3.6V to 4.5V, 50mV steps 2.0V to 3.0V, 50mV steps 2.0V to 3.5V, 50mV steps +50mV to +300mV, 5mV steps -300mV to -50mV, 5mV steps 0.5V fixed Accuracy±20mV Accuracy±30mV Accuracy±35mV Accuracy±100mV Accuracy±10mV Accuracy±20mV Accuracy±100mV

Selection from 143ms, 573ms, 1.2s Selection from 38ms, 150ms, 300ms Selection from 4.5ms, 9ms, 18ms Selection from 4.5ms, 9ms, 18ms Selection from 300us, 400us

Selection from "Prohibition" or "Permission"

Typ. 3.0uA, Max. 5.5uA Max. 0.1uA

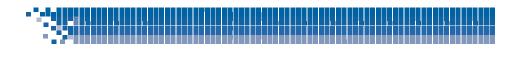
1.80 × 2.00 × 0.75 [mm] 1.40 × 1.40 × 0.55 [mm] 1.60 × 2.00 × 0.55 [mm]

MinebeaMitsumi Passion to Create Value through Difference

Mitsumi Qs

Mitsumi Electric CO., LTD.

https://mtm-sec.mitsumi.co.jp/web/ic/ Semiconductor Business Division Strategy Engineering Department tel:+81-46-230-3470


All brand names, logos, product names, trade names and service names described here are trademarks or registered trademarks of their respective computer of their respective computer of the service names and service names are trademarks or registered trademarks of the service names are trademarks or trademarks or registered trademarks of the service names are trademarks or trademarks or registered trademarks of the service names are trademarks or trademarks or registered trademarks or tra

高額語

The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check their specifications.

Any products mentioned in this leaflet are subject to any modification in their appearance and others for improvements without prior notification.

Pin explanations

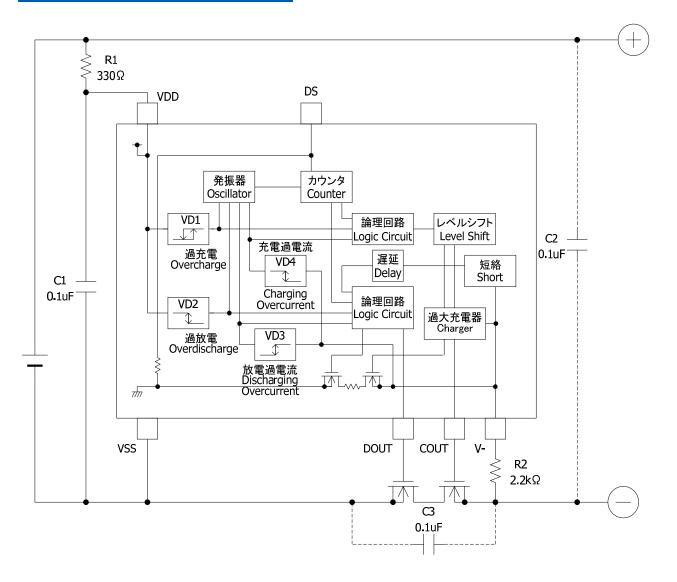
SSON-6A/6J	Pin No.	Symbol	Function		
	1	DS	Delay shorten terminal.		
1 6	2	COUT	Output of overcharge detection.		
	3	DOUT	Output of overdischarge detection.		
2 5	4	VSS	VSS terminal. Connected to ground.		
3	5	VDD	VDD terminal. Connected to IC substrate.		
	6	V-	Input terminal connected to charger negative voltage		

SON-6C	Pin No.	Symbol	l Function		
	1	DS	Delay shorten terminal.		
	2	COUT	Output of overcharge detection.		
	3	DOUT	Output of overdischarge detection.		
	4	VSS	VSS terminal. Connected to ground.		
3 🗍 🛛 🖓 4	5	VDD	VDD terminal. Connected to IC substrate.		
	6	V-	Input terminal connected to charger negative voltage		

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply voltage	VDD	-0.3	12	V
V- terminal	V-	VDD-28	VDD+0.3	V
COUT terminal	VCOUT	VDD-28	VDD+0.3	V
DOUT terminal	VDOUT	VSS-0.3	VDD+0.3	V
Storage temperature	Tstg	-55	125	°C

Recommended Operating Conditions


Parameter	Symbol	Min	Max	Unit
Operating ambient temperature	Topr	-40	85	°C
Operating voltage	Vop	1.5	5.5	V

Electrical characteristics

			(Unl	ess otherv	wise specified,T	a=25℃)
Parameter	Symbol	Note	Min	Тур	Max	Unit
		Input/Output voltage				
Maximum forbidden voltage for 0V charging	Vst	"Prohibition" function	0.6	0.9	1.2	V
Minimum operating voltage for 0V charging	vst	"Permission" function	-	-	1.2	V
COUT pin Nch ON voltage	Vol1	Iol=30uA, VDD=4.5V	-	0.4	0.5	V
COUT pin Pch ON voltage	Voh1	Ioh=-30uA, VDD=3.9V	3.4	3.7	-	V
DOUT pin Nch ON voltage	Vol2	Iol=30uA, VDD=2.0V	-	0.2	0.5	V
DOUT pin Pch ON voltage	Voh2	Ioh=-30uA, VDD=3.9V	3.4	3.7	-	V
		Current consumption				
Current consumption	Idd	VDD=3.9V, V-=0V	-	3.0	5.5	uA
Current consumption at stand-by	Is	Vdet2 = Vrel2	-	-	0.1	uA
		Vdet2≠Vrel2	-	0.2	0.5	uA
		Detection/Release volta	ge			
Overcharge detection voltage	Vdet1	Ta=+25℃	Тур-0.020	Vdet1	Typ+0.020	V
		Ta=-5~+60℃	Typ-0.025	vueli	Typ+0.025	
Overcharge release voltage	Vrel1	Vdet1≠Vrel1	Тур-0.030	Vrel1	Typ+0.030	V
Overdischarge detection voltage	Vdet2		Typ-0.035	Vdet2	Typ+0.035	V
Overdischarge release voltage	Vrel2	Vdet2≠Vrel2	Typ-0.100	Vrel2	Typ+0.100	V
Discharging overcurrent detection voltage	Vdet3		Тур-0.010	Vdet3	Typ+0.010	V
Charging overcurrent detection voltage	Vdet4		Тур-0.020	Vdet4	Typ+0.020	V
Short detection voltage	Vshort		0.4	0.5	0.6	V
		Detection delay time				
Overcharge detection delay time	tVdet1		Typ*0.8	tVdet1	Typ*1.2	S
Overdischarge detection delay time	tVdet2		Typ*0.8	tVdet2	Typ*1.2	ms
Discharging overcurrent detection delay time	tVdet3		Typ*0.8	tVdet3	Typ*1.2	ms
Charging overcurrent detection delay time	tVdet4		Typ*0.8	tVdet4	Typ*1.2	ms
Short detection delay time	tVshort		Typ*0.8	tVshort	Typ*1.2	us

R1 and C1 stabilize a supply voltage ripple. However, the detection voltage rises by the current of penetration in IC of the voltage detection when R1 is enlarged, and the value of R1 is adjusted to 1kohm or less. Moreover, adjust the value of C1 to 0.01u

R1 and R2 resistors are current limit resistance if a charger is connected reversibly or a high-voltage charger that exceeds the absolute maximum rating is connected. R1 and R2 may cause a power consumption will be over rating of power dissipation, theref

C2 and C3 capacitors have effect that the system stability about voltage ripple or imported noise. After check characteristics, decide that these capacitors should be inserted or not, where should be inserted, and capacitance value, please.