

2cells Li-ion/Li-polymer battery secondary protection IC

MM4128A/MM4129A Series

Outline

The MM4128A / MM4129A series is a double protection IC for 2 cell Li batteries. It detects battery voltage for each cell. The configuration of delay time can be achieved. Output at the time of detection can be held for a fixed period of time; therefore, this can maintain a regular disconnection time of a fuse. In addition, high cell voltage can be dropped and then stopped at the level where battery deterioration does not occur by Electrical discharge function of the IC after disconnecting the fuse.

Applications

Lithium-ion rechargeable battery pack Lithium-polymer rechargeable battery pack

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Operating ambient temperature	Topr	-40	85	$^{\circ}$
Operating voltage	Vop	1.5	11.0	V

Features

(Unless otherwise specified, Ta=25°C)

1) Range and accuracy of detection/release voltage

 Overcharge detection voltage 3.6V~5.0V, 5mV Step Accuracy±15mV · Overcharge hysteresis voltage*1 15_mV Accuracy±5mV · Standby detection voltage Selection from 2.5V, 3.5V Accuracy±300mV

2) Range of detection delay time

Selection from 300us or 2.4ms or · Overcharge detection delay time Accuracy ±67%

19.2ms or 153.6ms

Selection from 600us or 1.2ms · Overcharge release delay time Accuracy ±50%

3) Current consumption

 Current consumption (VCELL=4.0V) Typ. 0.85uA, Max. 1.70uA

 Current consumption at standby (VCELL=2.0V) Typ. 0.15uA, Max. 0.30uA

4) Package type

 SSON-6U / SSON-6V $1.40 \times 1.80 \times 0.40$ [mm]

*1 The condition for release from overcharge detection is that cell voltage is less than or equal to "overcharge detection voltage (Vdet)" -"overcharge hysteresis voltage (Vhys)".

https://product.minebeamitsumi.com/product/category/ics/

Mitsumi Electric CO.,LTD.

Semiconductor Business Division Strategy Engineering Department tel:+81-46-230-3470

- All brand names, logos, product names, trade names and service names described here are trademarks or registered trademarks of their respective
- Any products mentioned in this leaflet are subject to any modification in their appearance and others for improvements without prior notification
- The details listed here are not a guarantee of the individual products at the time of ordering. When using the products, you will be asked to check the

Pin explanations

SCON GIL / SCON GV	Pin No		Cymbol	Function		
SSON-6U / SSON-6V	MM4128	MM4129	Symbol	Fuliction		
1 6 2 5	1	1	COUT	Output terminal of over charge detection.		
	2	2	VDD	Positive power supply voltage input terminal.		
	3	3	VBH	The input terminal of the positive voltage of H cell.		
3 4	4	5	VBL	The input terminal of the positive voltage of L cell, and the negative voltage of H cell.		
· · · · · · · · · · · · · · · · · · ·	5	4	NC	No connection.		
	6	6	VSS	Negative power supply voltage input terminal.		

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
VDD terminal supply voltage	V_{VDDMAX}	VSS-0.3	VSS+12	V
VBH terminal supply voltage	V_{VBHMAX}	VBL-0.3	VDD+0.3	V
COUT terminal Output voltage	$V_{COUTMAX}$	VSS-0.3	VDD+0.3	V
Voltage between VBH and VBL terminals	V _{VBH-VBLMAX}	VBH-8	VBH+0.3	V
Voltage between VBL and VSS terminals	$V_{VBL-VSSMAX}$	VSS-0.3	VSS+8	V
Storage temperature	T_{STG}	-55	125	$^{\circ}$

Electrical characteristics

(Unless otherwise specified, $Ta=25^{\circ}$ C)

Parameter	Symbol	Note	Min	Тур	Max	Unit		
Output voltage								
COUT terminal output voltage H 1(CMOS)	V _{co_h1}	I _{COUT} =0uA, V _{CELL} =4.7V	Typ×0.85	%1	Typ×1.15	V		
COUT terminal output voltage H 2(CMOS)	V_{co_h2}	I_{COUT} =50uA, V_{CELL} =4.7V	V _{co_h1} -0.5	V _{co_h1} -0.1	-	٧		
COUT terminal output voltage L		I_{COUT} =30uA, V_{CELL} =4.0V	-	0.2	0.5	V		
Current consumption								
Current consumption	I_{DD}	V _{CELL} =4.0V	-	0.85	1.70	uA		
Current consumption at standby	I_s	V _{CELL} =2.0V	-	0.15	0.30	uA		
Current consumption of VBL terminal	I_{VBLtml}	V _{CELL} =4.0V	-0.3	-	0.3	uA		
Detection/Release voltage								
Overcharge detection voltage	V_{det}	Ta=+25℃	Typ-0.015	- V _{det}	Typ+0.015	V		
		Ta=-5℃~+60℃	Typ-0.020		Typ+0.020			
Overcharge hysteresis voltage	V_{hys}		10	15	20	mV		
Standby detection voltage	V_{std}		Typ-0.30	V_{std}	Typ+0.30	V		
Detection delay time								
Overcharge detection delay time	t _{Vdet}		Typ-67%	t _{Vdet}	Typ+67%	us		
Overdischarge release delay time	t_{Vrel}		Typ-50%	t_{Vrel}	Typ+50%	us		

*1 COUT terminal output voltage H can be selected from 1.8V/3.3V/4.7V

Block diagram

Typical application circuit

