- continue

TC NC CK GND Vcc RCT Vs RESET

IC for System Reset (with built-in watchdog timer) Monolithic IC MM1095

March 31, 2004

Outline

This IC functions in a variety of CPU systems and other logic systems to generate a reset signal and reset the system accurately when the power is turned on or interrupted.

It includes a watchdog timer which allows diagnosis of the system operation, so that it prevents system runaway by intermittently generating a reset pulse when system misoperation occurs.

100µA typ.

Vcc=0.8V

Features

- 1. Built-in watchdog timer
- 2. Low current consumption
- 3. Low operating limit voltage
- 4. Watchdog stop function (RCT pin) included
- 5. Few external components

Packages

DIP-8B (MM1095AD, MM1095BD) SOP-8C (MM1095AF, MM1095BF)

Applications

- 1. Reset circuits for microcomputers, CPUs and MPUs
- 2. Reset circuits for logic circuits
- 3. Microcomputer system monitoring, etc.

Pin Assignment

			1
			2
	7 6	5	3
	7 0	5	4
			5
1	2 3	4	6
			7
SC	P-8C/DI	⊃-8B	8

Pin Description

Pin No.	Name	Fu	nction
		TwD, Twr, TPR variable pins	Tpr (ms)=5000 ×Cτ (μF)
1	TC	(TwD, TwR and TPR times are determined	Тwd (ms)=500 ХСт (µF)
		by the external capacitor.)	Twr (ms)=100 ×Cτ (μF)
2	N.C		
3	СК	Clock input pin, inputs clock from logic syste	em
4	GND	GND pin	
5	Vcc	Voltage detection $MM1095A \rightarrow 3.2V, MN$	41095B→4.2V
6	RCT	Watchdog timer stop pin Operation modes	: Operation \rightarrow OPEN, Stop \rightarrow connect to GND
7	Vs	Detection voltage variable pin	
8	RESET	Reset output pin (low output)	
			•
bsolut	te Max	imum Ratings	

Absolute Maximum Ratings

Item	Symbol	Rating	Units
Power supply voltage	Vcc max.	-0.3~+10	V
CK pin input voltage	Vск	-0.3~Vcc+0.3 (≤+10)	V
Vs pin input voltage	Vvs	-0,3~Vcc+0.3 (≤+10)	V
Voltage applied to RCT pin	VRCT	-0.3~Vcc+0.3 (≤+10)	V
Voltage applied to RESET pin	Voн	-0.3 ~Vcc+0.3 (\leq +10)	V
Allowable loss	Pd	400	mW
Storage temperature	Tstg	-40~+125	°C

Recommended Operating Conditions

Item	Symbol	Rating	Units
Supply Voltage	Vcc	+2.2~+7.0	V
RESET Sink Current	Iol	0~1.0	mA
Watchdog Time Monitoring Time Set value	Twd	0.1~5000	ms
Reset Hold Time at Power Rise Set value	Tpr	0.1~5000	ms
Clock Rise and Fall Time	trc, trc	<100	μs
Operating Temperature	Тор	-25~+75	°C

Electrical Characteristics (DC) (Except where noted otherwise, MM1095A : Vcc=3.6V, Ta = 25°C, MM1095B: Vcc=5.0V)

Item		Symbol	Measurement conditions	Min.	Тур.	Max.	Units
Consumption	MM1095A	Icc	During watchdog timer operation		100	150	11 Δ
current	MM1095B	ICC	During watchuog timer operation		130	195	μΑ
	MM1095A	Vor	Vo-OPEN Voo	3.10	3.20	3.30	V
Detection	MM1095B	V SL		4.05	4.20	4.35	
voltage	MM1095A	Veu	Ve-OPEN Vec	3.15	3.25	3.35	
	MM1095B	V SH		4.15	4.30	4.45	
Detection	voltage	Vs/⊿T			±0.01		%/°C
temperature				25	50	100	
Hysteresis voltage	Hysteresis voltage		Vsh–Vsl, Vcc	50	100	150	mV
CK input threshold		Var		0.8	100	100	V
		VIН	$\mathbf{A} \cdot \mathbf{V}_{CV} = 3.6 \mathbf{V} \cdot \mathbf{B} \cdot \mathbf{V}_{CV} = 5.0 \mathbf{V}$	0.0	1.2	1	v
CK input current			Vck=0V	-12	-6	-2	μΑ
Output voltage	MM1095A		I RESET =-1µA	3.0	3.4		V
(High)	MM1095B	- Vон	Vs=OPEN	4.0	4.5		
Output voltage (Low)		Vol1	I RESET =0.5mA, Vs=0V		0.2	0.4	v
		Vol2	I reset =1.0mA, Vs= 0 V		0.3	0.5	v
R output sync current		Iol	V RESET = $1.0V$, Vs= $0V$	1	2		mA
Ct charge current		Іст1	VTc=1.0V during watchdog timer operation	-1.60	-2.40	-4.80	μA
		Іст2	VTC=1.0V during power ON reset operation	-0.16	-0.24	-0.48	μA
Minimum oper	ating power	VCCL	V RESET =0.4V		0.8	1.0	V
supply voltage to	ensure RESET		I RESET =0.1mA				
S	rodi						

Electrical Characteristics (DC)

(Except where noted otherwise, MM1095A : Vcc=3.6V, Ta=25°C, MM1095B : Vcc=5.0V) (Except where noted otherwise, resistance unit is Ω)

lte	em	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
Vcc input	MM1095A	Ты	Vcc 3.6V 2.8V	8			115
pulse width MM1095B			Vcc 5.0V 4.0V	8			μσ
CK input p	ulse width	Тскw	CK or	3			μs
CK inpu	ut cycle	Тск		20			μs
Watchd monitorin	og timer g time *1	Twd	Ст=0.02µF	5	10	15	ms
Reset t watchdog	ime for g timer *2	Twr	Ст=0.02µF	1	2	3	ms
Reset hol power sup	d time for ply rise *3	Tpr	Ст=0.02µF, Vcc Vcc	50	100	150	ms
Output delay ti	me from Vcc *4	TPD	RESET pin, RL=10k, CL=20pF	Ć	2	10	μs
Output ris	se time *5	tr	RESET pin, RL=10k, CL=20pF	-	2.0	4.0	μs
Output fa	III time *5	tF	RESET pin, RL=10k, CL=20pF		0.2	1.0	μs

Notes:

*1 Monitoring time is the time from the last pulse (negative edge) of the timer clear clock pulse until reset pulse output. In other words, reset output is output if a clock pulse is not input during this time.

*2 Reset time means reset pulse width. However, this does not apply to power ON reset.

- *3 Reset hold time is the time from when Vcc exceeds detection voltage (VsH) during power ON reset until reset release (RESET output high).
- *4 Output delay time is the time from when power supply voltage drops below detection voltage (VsL) until reset (RESEToutput low).
- *5 Voltage range when measuring output rise and fall is 10~90%.
- *6 Watchdog timer monitoring time (Twb), watchdog timer reset time (TwB) and reset hold time (TPB) during power supply rise can be changed by varying C⊤ capacitance. The times are expressed by the following formulae.

 $T_{PR} (ms) = 5000 \times CT (\mu F)$ $T_{WD} (ms) = 500 \times CT (\mu F)$ $T_{WR} (ms) = 100 \times CT (\mu F)$ Example: When CT=0.02 μ F $T_{PR} = 100ms$ $T_{WD} = 10ms$ $T_{WR} = 2ms$

Measuring Circuits

Measuring Circuit 2 (AC)

Measuring Circuit 1 SW & Power Supply Table

Consumption current	lcc Vsl	OFF	OFF	OFF	ON									
Detection wells	Vsl	OFF		011	ON	ON	ON	А	3.6V	3.6V	0V	-	Icc	
		OFF	OFF	ON	ON	ON	ON	А	3.6V-3V	0V	2V	-	Vo1, CRT1	
	/sh	OFF	OFF	ON	ON	ON	ON	Α	3 V →3.6V	0V	2V	-	Vo1, CRT1	
CK input threshold	/ _{TH}	OFF	OFF	OFF	ON	ON	ON	A	3.6V	0V→3V	1V	-	Іск, Иск	
CK input ourrent	Iн	OFF	OFF	OFF	ON	ON	ON	A	3.6V	3.6V	0V	-	Іск	
	Iil	OFF	OFF	OFF	ON	ON	ØN	A	3.6V	0V	0V	-	Іск	
Output voltage (High)	/ _{ОН}	ON	OFF	ON	ON	ON	ON	Α	3.6V	3.6V	2V	-1μΑ	Vo1	
Output voltage (Levy)	OL1	ON	ON	ON	ON	ON	ON	А	3.6V	3.6V	2V	0.5mA	Vo1	
Vulput voltage (Low)	ol2	ON	ON	ON	ON	ON	ON	А	3.6V	3.6V	2V	1.0mA	Vo1	
Output sink current I	ol 1	OFF	ON	ON	ON	ØN	ON	В	3.6V	3.6V	2V	-	Io1	Vo=1V
CT charge current 1	тс1	OFF	OFF	OFF	ON	ON	OFF	А	3.6V	-	1V	-	Ітс	
CT charge current 2	тс2	OFF	OFF	OFF	ON	ON	OFF	А	3.6V	-	1V	_	Ітс	
Minimum operating power supply voltage to ensure BESET	CCL	ON	OFF	ON	ON	ON	ON	А	0V→2V	0V	0V	_	Vo1, Vcc	

Measuring Circuit 2 SW & Power Supply Table

Item	Symbol	SW1	SW2	VCCA	Vcc	Vска	Vск	CRT	Notes
	T ₀ 1	C	В	3.6VT1		$1.4V_{}$ T_2 T_3		CRT1	T1_8116
		C	D	2.5V OV		0V	_	CRT2	11-0µ8
CK input pulse width	Torne	Δ	р		2 6V	$1.4V_{}$ T_{2}		CRT1	T2_2110
	ICKW		D	-	3.01	$0V \square or \square_{T2}$	_	CRT2	12–5µ8
CK input ovala	Tau		D		2 GV	1.4VT2T3		CRT1	T2_20110
	ICK	A	D	-		-	CRT2	15=20µs	
Watchdog timer	Tum		Δ		2 GV		2 GV	CRT1	
monitoring time	IWD	A	A	-	3.01	-	3.01	CRT2	
Reset time for	Tum	Δ	Δ		2 6V		2 GV	CRT1	
watchdog timer	IWK	Л	л	-	3.01	-	3.07	CRT2	
Reset hold time for	Tan	D	Δ		2 GV		2 GV	CRT1	
power supply rise	I PK	D-A	A	-	3.01	-	3.01	CRT2	
Output delay time	Tm	C	Δ	3.6V-			ov	CPT1	
from Vcc	IPD		л	0V ¥	_	-	01	UNII	
Output rise time	TR	A	Α	-	3.6V		3.6V	CRT1	
Output fall time	TF	A	A	_	3.6V	_	3.6V	CRT1	

Block Diagram

Description of Operation

- 1. RESET goes low when Vcc rises to approximately 0.8V.
- 2. Capacitor C⊤ charging starts when Vcc rises to VsH (MM1095A ≒ 3.25V, MM1095B ≒ 4.3V). Output is in reset state at this time.
- 3. Output reset is released (RESET goes high) after a certain time (TPR), from when CT starts charging until discharge (the time from when CT voltage reaches a certain threshold value 1 (≒ 1.4V) until CT voltage drops to a certain threshold value 2 (≒ 0.2V). Approximately 1µA (Vcc=0.8V) of pull up current is output from RESET.

Reset hold time : TPR is as follows.

 T_{PR} (ms) = 5000 × C_T (µF)

 $C_{\ensuremath{^{\intercal}}}$ charging starts again after reset release, and watchdog timer operation begins.

- 4. If a clock is input (negative edge trigger) to the CK pin during C^T charging, charging switches to discharge.
- 5. Discharge switches to charging when C^T voltage drops to a certain threshold value (≒ 0.20). Steps 4 and 5 are repeated while a normal clock is input from the logic system.
- 6. Output goes to reset state (RESET goes low) when the clock ceases and C⊤ voltage reaches reset ON threshold value (≒ 1.4V).

The formula for C_T charging time (Twp: watchdog timer monitoring time) until reset is output is as follows. Twp (ms) $= 500 \times C_T (\mu F)$

7. Watchdog timer reset time TwR is the discharge time until C⊤ voltage drops to reset OFF threshold value (≒ 0.2V). The formula is as follows.

Twr (ms) $= 100 \times C_T (\mu F)$

After reset OFF threshold value is reached, output reset is released and C_T starts charging. Thereafter, steps 4 and 5 are repeated if a normal clock is input, and when the clock ceases, 6 and 7 are repeated.

- Reset is output when Vcc drops to VsL (MM1095A ≒ 3.2V, MM1095B ≒ 4.2V). C⊤ is charged simultaneously.
- 9. C⊤ charging starts when Vcc rises to VsH. When Vcc drops momentarily, C⊤ charging begins after the charge is first discharged, if the time from Vcc dropping below VsL until it rises to VsH is longer than the Vcc input pulse width standard value TPI.
- 10.Output reset is released after Vcc goes above VsH and after TPR, and the watchdog timer starts. Thereafter, 8~10 are repeated when Vcc goes below VsL.
- 11.When power is OFF, reset is output if Vcc goes below VsL.
- 12.When Vcc drops to 0V, reset output is held until Vcc reaches 0.8V.
- 13.Output of the reset pulse stops if RCT pin goes "LOW".
- 14.TC pin keeps charging/discharging even if RCT pin goes "LOW". Therefore if RCT is release and C⊤ is discharged at the same time, output goes "LOW" when RCT release. To avoid this operation, input CK before the TWR time of RCT release and discharge C⊤.
- 15.RESET output is released after the power on time in case of startup with RCT pin "LOW". (Operating as a reset with power on reset) The power on reset time is as follows: T_{PR}' ≒ T_{PR}-T_{WR} ≒ 4900 × C_T (μF)
- 16. There might be low pluse in output at the CT switching point from charging to discharging during power on reset at low temperature. If low pluse of reset output is a problem in operation, add capacitance Cout between $\overline{\text{RESET}}$ GND. Recommended value is as follows: Cout (µF) > 10⁴ × CT (µF)/RL (Ω)
- 17.RESET output keeps "LOW" if CK is input during T_{PR}. RESET output goes "HIGH" once CK is released. Noise jumps into CK easily if CK output of microcomputer is high impedance during T_{PR}. Pull down a resistance (approx. 10-100kΩ) to CK pin and lower the impedance or keep the IC away from noise if there's a possibility of defects such as RESET output keeps "LOW" due to CK malfunction caused by noise.