IC for System Reset (with built-in watchdog timer)

Monolithic IC MM1099

March 31, 2004

Outline

This IC functions in a variety of CPU systems and other logic systems to generate a reset signal and reset the system accurately when the power is turned on or interrupted.

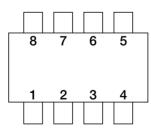
It includes a watchdog timer which allows diagnosis of the system operation, so that it prevents system runaway by intermittently generating a reset pulse when system misoperation occurs.

Features

- 1. Built-in watch dog timer
- 2. Low current consumption
- 3. Low operating threshold voltage
- 4. Watch dog stop function (RCT pin) included
- 5. Long clock monitoring time TPR (POWER ON): Two (clock monitoring)=1:1
- 6. Fewer outer components

aiscontinue 130µA typ.

Vcc=0.8V


Packages

DIP-8B (MM1099AD, MM1099BD) SOP-8C (MM1099AF, MM1099BF)

Applications

- 1. Reset circuits for microcomputers, CPUs and MPUs
- 2. Reset circuits for logic circuits
- 3. Microcomputer system monitoring, etc.

Pin Assignmem

SOP-8C/DIP-8B (TOP VIEW)

1	TC
2	N.C
3	CK
4	GND
5	Vcc
6	RCT
7	Vs
8	RESET

Pin Description

Pin No.	Pin name	Function
1	ТС	Variable terminals Twd, Twr and Tpr T_{PR} (ms) = $5000 \times C_T$ (μF) The time for Twd, Twr and Tpr to be T_{WD} (ms) = $5000 \times C_T$ (μF) determined by the external capacitor. T_{WR} (ms) = $100 \times C_T$ (μF)
2	N.C	
3	CK	Clock input pin Inputs the clock from the logic system.
4	GND	GND pin
5	Vcc	Voltage detection MM1099A→3.2V MM1099B→4.2V
6	RCT	Watchdog timer stop pin Operation modes: Operation → OPEN, Stop → connect to GND
7	Vs	Detect voltage variable pin
8	RESET	Reset output pin (low output)

Absolute Maximum Ratings

Item	Symbol	Rating	Units
Power supply voltage	Vcc max.	-0.3~+10	V
CK pin input voltage	Vck	-0.3~Vcc+0.3 (≤+10)	V
Vs pin input voltage	Vvs	-0,3~Vcc+0.3 (≤+10)	V
Voltage applied to RCT pin	Vrct	-0.3~Vcc+0.3 (≤+10)	V
Voltage applied to RESET pin	Vон	-0.3~Vcc+0.3 (≤+10)	V
Allowable loss	Pd	300	mW
Storage temperature	Tstg	-40~+125	$^{\circ}$ C

Recommended Operating Conditions

Item	Symbol	Rating	Units
Supply Voltage	Vcc	+2.2~+7.0	V
RESET Sink Current	Iol	0~1.0	mA
Watchdog Time Monitoring Time Set value	Twd	0.1~5000	ms
Reset Hold Time at Power Rise Set value	Tpr	0.1~5000	ms
Clock Rise and Fall Time	trc, trc	<100	μs
Operating Temperature	Тор	-25~+75	$^{\circ}\! C$

Electrical Characteristics (DC) (Except where noted otherwise, MM1099A: Vcc=3.6V, Ta=25°C, MM1099B: Vcc=5.0V)

Item		Symbol	Measurement conditions	Min.	Тур.	Мах.	Units			
Consumption current	MM1099A	Icc	During watchdog timer operation		(100)	(150)	μA			
Consumption current	MM1099B	ICC	During watchdog timer operation		130	195	μΑ			
	MM1099A	V _{SL}	Vs=OPEN, Vcc	3.10	3.20	3.30				
Detection voltage	MM1099B	V SL	VS=OFEN, VCC	4.05	4.20	4.35	V			
	MM1099A	Vsh	Vs=OPEN, Vcc	3.15	3.25	3.35	V			
	MM1099B	V 311	VS=OFEN, VCC	4.15	4.30	4.45				
Detection voltage temper	rature coefficient	Vs/⊿T			±0.01		%/°C			
Hysteresis voltage	MM1099A	V _{HYS}	Vsh-Vsl, Vcc	25	50	100	mV			
Hysteresis voltage	MM1099B	VHYS	VSH-VSL, VCC	50 (100	150	111 V			
CK input thre	eshold	V_{TH}		0.8	1.2	2	V			
CK input ou	rront	$\mathbf{I}_{ ext{IH}}$	A: Vck=3.6V, B: Vck=5.0V		0	1	μА			
CK input current		IIL	Vck=0V	-12 -6 -2 µ						
Output voltage	MM1099A	Voh	L PROVE 1.A. V. OPENI	3.0	3.4		V			
(High)	MM1099B	VOII	I RESET =-1μA, Vs=OPEN	4.0	4.5					
Output voltage (Low)		Vol1	I RESET =0.5mA, Vs=0V		0.2	0.4	V			
Output voitag	e (LOW)	Vol2	$I \overline{RESET} = 1.0 \text{mA}, Vs = 0V$		0.3	0.5	٧			
R output sync	current	Iol	V RESET =1.0V, Vs=0V	1	2		mA			
Ст charge c	ırrent	Іст1	V _{TC} =1.0V during watchdog timer operation	-0.16	-0.24	-0.48	μA			
Or charge of	arront	Іст2	V _{TC} =1.0V during power ON reset operation	-0.16	-0.24	-0.48	μA			
Minimum operat	ng power VCCL		V RESET =0.4V		0.8	1.0	V			
supply voltage to e	nsure RESET	VCCE	I RESET =0.1mA		0.0	1.0	•			
21	disc	\$								

Electrical Characteristics (AC)

(Except where noted otherwise, MM1096A : $V_{\rm CC}$ =3.6V, Ta=25°C MM1096B : $V_{\rm CC}$ =5.0V) (Except where noted otherwise, resistance unit is Ω)

Ite	em	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
Vcc input	MM1099A	Ты	Vcc 3.6V 2.8V	8			μs
pulse width	MM1099B		Vcc 4.0V	8			μο
CK input p	ulse width	Тскw	CK or	3			μs
CK inpu	ıt cycle	Тск		20			μs
Watchdo monitorin	_	Two	C _T =0.02μF	50	100	150	ms
Reset t		Twr	C _T =0.02μF	1	20	3	ms
Reset hole power sup		Tpr	Ст=0.02µF, Vcc	50	100	150	ms
Output delay tir	me from Vcc *4	Tpd	RESET pin, RL=10k, CL=20pF	Ny Y	2	10	μs
Output ris	e time *5	tr	RESET pin, RL=10k, CL=20pF		2.0	4.0	μs
Output fa	II time *5	tr	RESET pin, RL=10k, CL=20pE		0.2	1.0	μs

Notes:

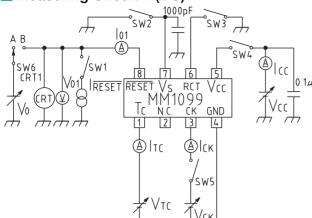
- *1 The "monitoring time" means the time interval from the last pulse of the clock pulses for timer clear (negative edge) to the output of the reset pulse. If the clock pulse is not input during this time interval, the reset output will be given.
- *2 The "reset time" is no other than the reset pulse width, except when resetting the POWER ON.
- *3 The "reset hold time" is the time interval from the time point when Vcc exceeds the detect (Vsh) at the time of Power On Reset (Power variation reset) to the reset release (RESET output "HIGH").
- *4 The "output delay time" means the time interval from when the supply voltage comes lower than the detect voltage (VsL) to when comes the reset state (RESET output "Low").
- *5 The voltage range is 10 to 90% when measuring the output rise and fall times.
- *6 By varying the capacitance of Ct, we can vary the watch dog timer monitoring time (TwD), the reset time at the time of the watch dog timer (TwR), and the reset hold time at the time of power source rise (TPR). The variable time can be expressed by the following formulas:

TPR (ms) $\stackrel{\checkmark}{=} 5000 \times CT (\mu F)$

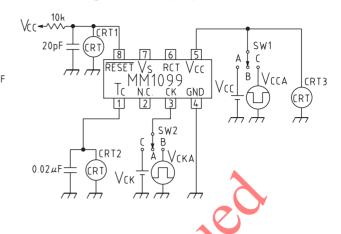
Two (ms) = 5000 \times CT (μ F)

Twn (ms) = $100 \times C_T (\mu F)$

Example: When CT=0.02µF


TPR = 100ms

Two ≒ 100ms


Twr ≒ 2ms

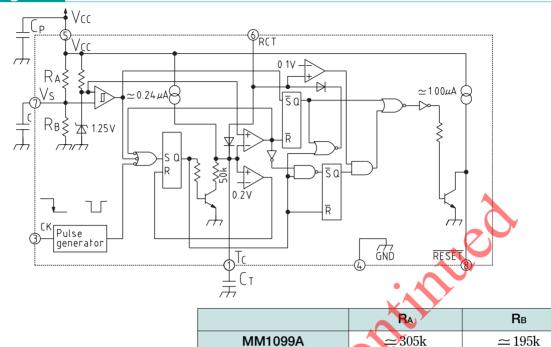
Measuring Circuits

■ Measuring Circuit 1 (DC)

■ Measuring Circuit 2 (AC)

Measuring Circuit 1 SW & Power Supply Table

Item	Symbol	SW1	SW2	SW3	SW4	SW5	SW6	SW7	V cc	V ck	Vcт	RESET	VM, IM	Notes
Consumption current	Icc	OFF	OFF	OFF	ON	ON	ON	A	3.6V	3.6V	0V	-	Icc	
5	Vsl	OFF	OFF	ON	ON	ON	ON	A	3.6V→3V	0V	2V	-	Vo1, CRT1	
Detection voltage	V _{SH}	OFF	OFF	ON	ON	ON	ON	A	3V→3.6V	0V	2V	_	Vo1, CRT1	
CK input threshold	V _{TH}	OFF	OFF	OFF	ON	ON	ON	A	3.6V	0V→3V	1V	-	Іск, Уск	
CIV in next accordant	Іін	OFF	OFF	OFF	ON	ON	ON	A	3.6V	3.6V	0V	-	Iск	
CK input current	IIL	OFF	OFF	OFF	ON	ON	ON	A	3.6V	0V	0V	-	Iск	
Output voltage (High)	Voh	ON	OFF	ON	ON	ON	ON	A	3.6V	3.6V	2V	–1μA	Vo1	
Output valtage (Levy)	Vol1	ON	ON	ON	ON	ON	ON	A	3.6V	3.6V	2V	0.5mA	Vo1	
Output voltage (Low)	Vol2	ON	ON	ON	ON	ON	ON	A	3.6V	3.6V	2V	1.0mA	Vo1	
Output sink current	Iol1	OFF	ON	ON	ON	ON	ON	В	3.6V	3.6V	2V	-	Io1	Vo=1V
Ст charge current 1	Ітс1	OFF	OFF	OFF	ON	ON	OFF	A	3.6V	-	1V	_	ITC	
Ст charge current 2	Ітс2	OFF	OFF	OFF	ON	ON	OFF	A	3.6V	-	IV	-	ITC	
Minimum operating power	Vccl	ON	OFF	ON	ON	ON	ON	A	0V→2V	oV	0V		V V	
supply voltage to ensure RESET		ON	OFF	D'IN			ON	A	UV→2V	UV	UV	_	Vo1, Vcc	


Measuring Circuit 2 SW & Power Supply Table

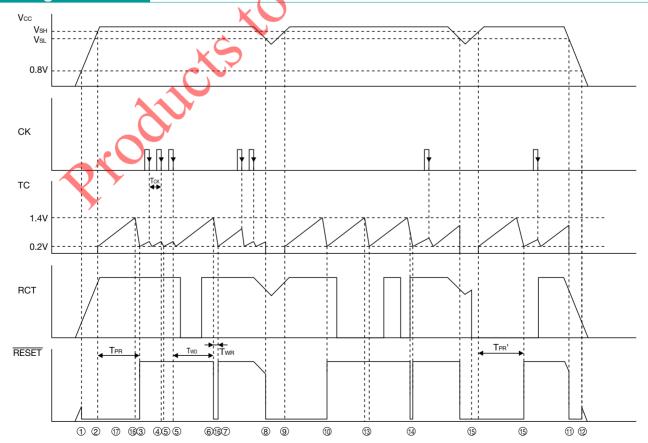
Item	Symbol	SW1	SW2	Vcca	Vcc	V CKA	V cк	CRT	Notes	
Vcc input pulse width	T ≥1	С	В	3.6VT1	_	1.4V	_	CRT1	T1=8µs	
				2.8V		ov		CRT2	ΙΙ Ομο	
CK input pulse width	Тскw	A	В		3.6V	1.4V	_	CRT1	Т9_2440	
CK input puise width	1 CKW	A	В	_	3.0 v	$0V \longrightarrow \overline{r}$	_	CRT2	T2=3μs	
CIV innert avala	т	_	В		2 CM	1.4V		CRT1	ТЭ ЭО	
CK input cycle	Тск	A	Б	_	3.6V	0V	_	CRT2	T3=20μs	
Watchdog timer	т	_	Λ		2 CM		2 (3)	CRT1		
monitoring time	Twd	A	A	_	3.6V	_	3.6V	CRT2		
Reset time	Twr	A	A		2 CM		3.6V	CRT1		
for watchdog timer	IWR	A	A	_	3.6V	_	3.61	CRT2		
Reset hold time for	TPR	B→A	A		2 677		3.6V	CRT1		
power supply rise	1 PR	D→A	A	_	3.6V –		3.01	CRT2		
Output delay time	TPD	С	A	3.6V			oV	CRT1		
from Vcc	IPD		A	0V *	_	_	UV	CKII		
Output rise time	TR	A	A	_	3.6V	_	3.6V	CRT1		
Output fall time	TF	A	A	_	3.6V	-	3.6V	CRT1		

≃350k

 $\simeq 150k$

Block Diagram

Note 1. Cp = approx. $0.1\mu F$


Note 2. C ≥ 1000pF

Note 3. The watchdog timer can be stopped by grounding the RCT pin. (Function as voltage detection circuit.)

Note 4. Tpr, Two can be varied by pulling up the RCT pit to Vcc using a resisteor.

MM1099B

Description of Operation

- 1. The RESET will become "Low" if Vcc rises to about 0.8V.

 Approximately 1µA (Vcc=0.8V) of pull up current is output from RESET
- 2. Charging starts at the capacitor C_T when V_{CC} riset to V_{SH} (MM1099A ≒ 3.25V, MM1099B ≒ 4.3V), when the output has been reset.
- 3. The output reset is released after a given interval TPR from when the CT Starts charging and to when it discharges (that is, the time from when CT voltage takes a given value 1 (≒ 1.4V) up until decreases to a given value 2 (≒ 0.2V). (RESET will become "High"). The RESET will output a pull up current, about 1µA (Vcc=0.8V). The reset hold time TPR is expressed by the following formula:

Tpr (ms) $= 5000 \times C_T (\mu F)$

After the reset release C_T restarts charging and the watch dog timer begins operating.

Note that input of clock while POWER ON RESET time TPR will cause an erroneous operation.

- 4. If clock is input into CK terminal while C_T is charging (negative edge trigger), C_T changes from charging over to discharging.
- 5. When the C_T voltage decreases to a given threshold (≒ 0.2V), then discharging changes over to charging. Steps 4 and 5 will be repeated while normal clock is input from the logic system.
- 6. When the clock ceases and C_T voltage reaches the RESET ON threshold (≒ 1.4V), the output enters into reset state (RESET becoming "Low").

The C_T charging time T_{WD} up until the reset is output (watch dog monitoring time) is expressed by the following formula:

Two (ms) $= 5000 \times C_T (\mu F)$

7. The reset time at the time of watch dog time TwR is the discharging time while the C_T voltage lowers down to the reset off threshold (≒ 0.2V). The calculation formula:

Twr (ms) $= 100 \times C_T (\mu F)$

After the reset off threshold is reached, the output reset is released and C_T commences to charge. If thenceforth the clock is input normally, steps 4 and 5 will be repeated, and setps 6 and 7 repeated if the clock ceases.

- 8. When Vcc lowers down to VsL (MM1099A ≒ 3.2V, MM1099B ≒ 4.2V), the reset is output. At the same time C⊤ charged.
- 9. Ct discharging starts when Vcc rises up to Vsh.

If Vcc lower instantaneously, charging starts after load discharging of C_T if the time interval from when Vcc comes lower than V_{SL} up until when it rises to V_{SH} or higher is equal or superior to the reference value of Vcc input pulse width T_{Pl}.

- 10. The output reset is released Tex after Vcc becomes Vsh or higher, and the watch dog time will start. Then if Vcc becomes VsL or lower, steps 8 to 10 will be repeated.
- 11.If power Off occurs, reset is output if Vcc becomes VsL or lower.
- 12. When Vcc comes down to 0V, the reset output will hold up until Vcc becomes 0.8V.
- 13. Output of the reset pulse stops if RCT pin goes "LOW".
- 14.TC pin keeps charging/discharging even if RCT pin goes "LOW". Therefore if RCT is release and C⊤ is discharged at the same time, output goes "LOW" when RCT release. To avoid this operation, input CK before the TWR time of RCT release and discharge C⊤.
- 15. When started up with the RCT pin at "LOW," reset output is cancelled after power ON time elapses. (It operates as if for power ON reset.) The power ON reset time is the same time as Two.

 $T_{PR}' = T_{WD} = 4900 \times C_T (\mu F)$

16. During power ON reset and watchdog timer, a spike may appear in the output at the point where C_T switches from charge to discharge. When this reset output spike causes operational problems, add a COUT capacitor between $\overline{\text{RESET}}$ and GND. The recommended value is as follows. $C_{\text{OUT}} (\mu F) > 10^4 \times C_T (\mu F)/R_L (\Omega)$

17.RESET output keeps "LOW" if CK is input during T_{PR}. RESET output goes "HIGH" once CK is released. Noise jumps into CK easily if CK output of microcomputer is high impedance during T_{PR}. Pull down a resistance (approx. 10-100kΩ) to CK pin and lower the impedance or keep the IC away from noise if there's a possibility of defects such as RESET output keeps "LOW" due to CK malfunction caused by noise.