

低消費 リチウムイオン電池残量計IC

MM8118W02LFE

概要

MM8118W はリチウムイオン電池またはリチウムポリマ電池用の電池残量計ICです。本製品は、超低消費電力動作が特長です。電池容量が小さいウェアラブル製品の電池残量計測に最適です。また、小型CSPパッケージの採用で、実装面積が限られる小型製品に最適です。

本ICは、高精度な
ΔΣADCにより、温度、電圧、電流を計測し、充放電時の電流積算、電池固有の特性パラメータと計測値による容量補正を実施します。これにより高精度な電池残容量の管理が可能です。

本ICは安心・安全に電池をご使用頂く機能として、電池容量変化による電池の劣化判定機能を持ちます。これらの情報は通知することができます。

MM8118Wは、システム本体、電池パック内、どちらにも搭載することが可能です。

特長

高精度な電流/電圧測定

電流、電圧値は16bit⊿∑ADCにより高精度に測定されます。分解能は、電圧 1mV、電流 1mA または 0.1mA(選択可)です。

高精度な電池残容量管理

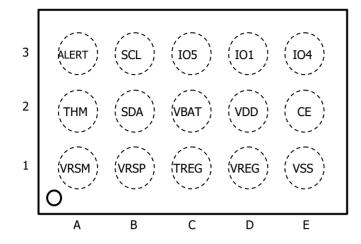
電池積算容量は定期的に測定される電流値の積算を基準としており、解放電圧(OCV)と電池特性パラメータより補正されます。これにより、常に誤差が最小限に保たれるように管理されます。

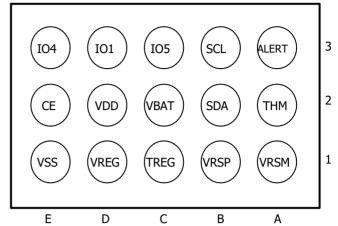
• 超低消費電力動作

無負荷時、60秒に1回、ADC測定と残量計算を行う長間隔の間欠動作により、消費電流が大幅に低減されます。(標準設定時)

電池の劣化モニタ

電池の全容量は定期的に測定され、容量変化の状態がモニタされます。


パッケージ


WLCSP-15A

ピン配置

Top View Bottom View

端子説明

ピン No.	入出力	名称	機能
A1	IN	VRSM	電流センサ入力端子
A2	IN	THM	サーミスタ入力端子
A3	OUT	ALERT	ALERT 出力端子 (Open Drain output)
B1	IN	VRSP	電流センサ入力端子
B2	IN/OUT	SDA	I2Cデータ入出力端子
В3	IN/OUT	SCL	I2Cクロック入出力端子
C1	OUT	TREG	サーミスタ用レギュレータ出力端子
C2	IN	VBAT	電池電圧測定用端子
C3	IN/OUT	105	汎用ポート 入出力端子 (Open Drain output)
D1	OUT	VREG	レギュレータ出力端子
D2	-	VDD	電源端子
D3	IN/OUT	IO1	汎用ポート 入出力端子 (Push Pull output)
E1	-	VSS	汎用ポート 入出力端子 (Push Pull output)
E2	IN	CE	チップイネーブル端子。使用しない場合はVDDを入力してください。
E3	IN/OUT	IO4	汎用ポート 入出力端子 (Push Pull output)

絶対最大定格

(特記なき場合 Ta=25℃)

項目	記号	最小	最大	単位
電源電圧	VDD	-0.3	6.0	V
入力電圧	VIN	-0.3	6.0	V
CE入力電圧	VIN2	-0.3	VDD+0.3	V
THM入力電圧	VIN3	-0.3	VDD+0.3	V
レギュレータ端子電圧	VREG	-0.3	2.2	V
サーミスタ用レギュレータ端子電圧	TREG	-0.3	2.2	V
VRSM,VRSP入力電圧	VI	-0.3	2.2	V
保存温度	Tstg	-40	125	°C

推奨動作範囲

項目	記号	最小	最大	単位
動作周囲温度	Topr	-20	85	°C
動作電圧	Vop	2.5	5.5	V

電気的特性

(特記なき場合 Vdd=3.6V,Topr=25℃)

項目	記号	条件	最小	標準	最大	単位	*1
			-	30.5	-		
ノーマルモード消費電流	Inor	*2	-	31.0	-	μA	T1
		Topr=-20 ~ 85°C *2	-	ı	48.0		
		測定間隔 20s	-	21.8	-		
スリープモード消費電流	Islp	測定間隔 20s *2	-	22.0	1	μA	T1
		測定間隔 20s Topr=-20~85℃ *2	-	ı	33.0		
		測定間隔 60s	-	6.3	-		
フルスリープモード消費電流	Ifslp	測定間隔 60s *2	-	6.3	ı	μΑ	T1
		測定間隔 60s Topr=-20~85℃ *2	-	-	23.0		
スタンバイモード消費電流	Istb		-	5.5	1		T1
	1200	Topr=-20∼85°C	-	-	20.0	μА	11
シャットダウンモード消費電流	Isdn		-	0.36	1.0	μΑ	T1

^{*1} 測定回路図の記号

^{*2 100}kΩのサーミスタで、外付抵抗100kΩの場合

(特記なき場合 Ta=25℃)

					11100000		
項目	記号	条件	最小	標準	最大	単位	*3
供給電圧	VDD		2.5	-	5.5	V	-
データI/O端子電圧範囲 (SCL, SDA, ALERT, IO1, IO4,CE)	VIO		-0.3	-	VDD+0.3	V	-
データI/O端子電圧範囲 (IO5)	VIO2		-0.3	-	5.5	V	-
内蔵発振器周波数1	fosc1	Ta=-20 ∼ 85°C	-	2000.0	-	kHz	T2
内蔵発振器周波数2	fosc2	Ta=-20∼85°C	-	32.768	-	kHz	T2
電流センサ入力範囲	Irng		-48.0	-	48.0	mV	Т3
電池電圧センサ入力範囲	Vrng		1800	-	5000	mV	Т3
内蔵温度センサ入力範囲	Trng		-20	-	85	ပွ	Т3
THM端子内蔵抵抗値	Pthm		-	10.0	-	kΩ	Т3
レギュレータ電圧	Vreg	VDD=3.6V @25°C	1.76	1.8	1.84	V	T4
サーミスタ用レギュレータ電圧	Treg	VDD=3.6V @25°C	1.76	1.8	1.84	V	T4
VBAT入力インピーダンス	Pcell	VBAT=3.6V	2.0	3.5	-	ΜΩ	T5
リセット検出電圧	Vrst	design assurance	1.7	1.9	2.1	V	-
リセットヒステリシス電圧	Vrhys	design assurance	0.10	0.15	0.20	٧	-

^{*3} 測定回路図の記号

(2) I2C/IOインターフェース特性

項目	記号	条件	最小	標準	最大	単位	*4
"L"レベル入力電圧 (SCL, SDA, IO1, IO4, IO5)	VIL1		-0.3	-	0.6	V	Т8
"L"レベル入力電圧 (CE)	VIL2		-0.3	ı	0.4	٧	Т8
"H"レベル入力電圧 (SCL, SDA, ALERT, IO1, IO4)	VIH1		1.2	-	VDD+0.3	V	Т8
"H"レベル入力電圧 (IO5)	VIH2		1.2	-	5.5	V	Т8
"H"レベル入力電圧 (CE)	VIH3		1.0	-	VDD+0.3	V	Т8
入力電圧ヒステリシス (SCL, SDA, CE, Alert, IO1, IO4, IO5)	Vhys		0.1	-	-	V	Т8
"L"レベル出力電圧 (SCL, SDA, ALERT, IO1, IO4, IO5)	Vol	Iol=3mA	-	-	0.4	V	Т6
"H"レベル出力電圧 (IO1, IO4)	Voh	loh=1mA	VDD-0.5	-	-	V	Т6
SCL, SDA入力フィルタによって 抑圧されるスパイクのパルス幅	tsp		50	-	-	ns	Т8
各I/Oピンの入力電流	li	input voltage between 0.1 and 0.9 VCCmax	-10	-	10	mA	T7
各I/Oピンの静電容量	Ci		-	1	10	рF	Т8

^{*4} 測定回路図の記号

(3) I2Cインターフェース特性: SDAおよびSCL バスラインの特性

全ての値はVIHminおよびVILmaxレベル基準です。(2)を参照して下さい。

項目	記号	条件	最小	標準	最大	単位	*5
SCLクロック周波数	fSCL		0	-	400	kHz	Т8
ホールド時間"START"条件	tHD:STA		0.6	-	-	ms	Т8
SCLクロックの"L"期間	tLOW		1.3	-	-	ms	Т8
SCLクロックの"H"期間	tHIGH		0.6	-	-	ms	Т8
反復"START"条件の セットアップ時間	tSU:STA		0.6	-	-	ms	Т8
データ・ホールド時間	tHD:DAT	for I2C-bus devices	0	-	- (*6)	ms	Т8
データ・セットアップ時間	tSU:DAT		100 (*7)	-	-	ns	Т8

^{*5} 測定回路図の記号

^{*7} ファースト・モードI2Cバス・デバイスを標準モードI2Cバス・システムで使用することは可能ですが、tSU;DAT ≥ 250ns の要件を満たしていることが必要です。デバイスがSCL 信号のLOW 期間をストレッチしない場合、これは自動的に適用されます。デバイスがSCL 信号のLOW 期間をストレッチした場合は、データビットをSDA ラインへ、SCL ラインがリリース前 tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (標準モードI2Cバス仕様に準拠) に出力しなければなりません。

項目	記号	条件	最小	標準	最大	単位	*8
SDA信号の 立ち下がり時間	tF	Iol= 3mA	-	-	300	ns	Т8
"STOP"条件のセットアップ時間	tSU:STO		0.6	-	ı	ms	Т8
"STOP"条件と"START"条件の バスフリー時間	tBUF		1.3	-	1	ms	Т8
それぞれのバスラインの 容量性負荷	Cb		-	-	400	pF	Т8

^{*8} 測定回路図の記号

^{*6} 最大tHD;DATは少なくとも、デバイスのSCL信号のLOW期間(tLOW)をストレッチしていないということを満たしていなければなりません。

機能

MM8118Wは、電流、電圧、温度を定期的に測定することで、リチウムイオン電池の残量、または状態を監視します。

電池残量計

定期的な電流の測定により、充放電の発生有無の判断、発生充放電電流の積算を行い、残存する電池容量 (残容量)の管理を行います。これらの管理された容量を基準とし、稼働時間(使用可能時間)などの有益な 情報も取得することが可能です。

しかしながら、高精度な
ΔΣADCにより測定された電流の積算であっても、僅かな誤差を長時間かけて蓄積してしまう可能性があるため、特定の条件を満たした状態の測定電圧(開放電圧)より、残容量の補正を行う機能を持ちます。

OCVによる残容量補正

開放電圧(OCV)による残容量補正は、特定の条件を満たした状態で測定された電圧と内蔵メモリに保存されている電池の特性データより、理想的な残容量を求め、現在の残容量との差分を補正します。

上記の残容量補正は、以下の条件を全て満たした場合に実行されます。

- 1) 測定電流が閾値未満の場合
- 2) 充放電後の電圧復帰が安定する特定時間経過した場合
- 3) 測定温度が閾値以内の場合
- 4) 残容量補正後、閾値時間以上経過した場合

電池容量の更新

本ICにおいて、電池容量とは、電池の最大使用可能範囲の容量と定義しております。

この電池容量は、長く使用を続けることで徐々にではありますが、減少することが判っております。 そこで、本ICでは、特定の条件を満たした場合に電池容量の算出を行い、その算出結果を現在の電池容量に反映します。

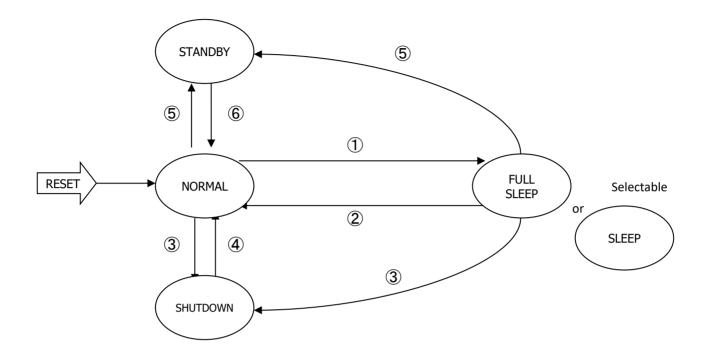
電池容量算出条件

- 1) 規定電圧以上まで閾値容量以上の充電が行われた場合
- 2) 充電開始前、充電終了後に、OCV測定が行われた場合

また、更新する際には、初期の電池容量からの変化率(容量劣化率)を算出しておりますので、 この値を参考に劣化電池の判断の目安とすることが可能であります。

パワーオンリセット時の初期残量値

ICに電源を投入した直後に計算される初期の残量値は、次のように算出されます。 電池が直前の30分間、無負荷の緩和状態にあると仮定して、初回の電池電圧測定値を残量値に変換します。この変換テーブルをOCVテーブルと呼びます。


チップイネーブル端子

本製品には、チップイネーブル端子があります。チップイネーブル端子がLowのとき、シャットダウンモードに 遷移します。

電力管理

電池の残量、または状態を監視する本ICにおいて、自身で消費する電力を低く抑えることは重要なポイントです。以下に本ICの動作モード状態図と各々のモードを示します。

- ① 充放電電流が閾値未満の状態を特定時間経過した場合 FULL SLEEP(or SLEEP)遷移コマンドを受信
- ② 充放電電流が閾値以上の場合 NORMAL遷移コマンドを受信
- ③ Control Statusの SHUTDOWN設定が 1の時、電池電圧がIC下限電圧以下の場合 SHUTDOWN遷移コマンドを受信 チップイネーブル端子にLow入力
- ④ チップイネーブル端子の状態がHighの場合、I2C通信で本ICのスレーブアドレス指定のコマンド入力チップイネーブル端子の状態がLowの場合、チップイネーブル端子にHigh入力
- ⑤ Control Statusの HIBERNATE設定が 1の時、電池電圧がIC下限電圧以下の場合 STANDBY遷移コマンドを受信
- ⑥ I2C command受信

NORMAL mode

電流、電圧、温度を測定し、残容量管理を行います。測定・処理周期は、1秒周期(Default)で行います。I2C 通信は、常に有効な状態です。

Mode遷移条件

- ・モード遷移コマンドを受信した場合→ 各指定モード
- ・ 測定電流が閾値未満の状態を特定時間経過した場合 → FULL SLEEP mode (or SLEEP mode)
- ・電池電圧がIC下限電圧以下の状態を特定時間検出した場合 → STANDBY mode もしくは SHUTDOWN mode

FULL SLEEP mode

電流、電圧、温度を測定し、残容量管理を行います。測定・処理周期は、60秒周期(Default)で行います。測定・処理を実行していない間は、超低消費モードになります。I2C通信は、常に有効な状態です。

Mode遷移条件

- ・ モード遷移コマンドを受信した場合 → 各指定モード
- ・ 測定電流が閾値以上の場合 → NORMAL mode
- ・電池電圧がIC下限電圧以下の状態を特定時間検出した場合 → STANDBY mode もしくは SHUTDOWN mode

SLEEP mode

電流、電圧、温度を測定し、残容量管理を行います。測定・処理周期は、20秒周期(Default)で行います。測定・処理を実行していない間は、低消費モードになります。I2C通信は、常に有効な状態です。

Mode遷移条件

・ モード遷移コマンドを受信した場合 → 各指定モード

・ 測定電流が閾値以上の場合 → NORMAL mode

・電池電圧がIC下限電圧以下の状態を特定時間検出した場合 → STANDBY mode もしくは

SHUTDOWN mode

STANDBY mode

STANDBY modeでは、Fuel Gauge動作が停止します。揮発性RAMの内容は保持されます。 全てのレジスタ値も保持されます。

Mode遷移条件

I2Cコマンドを受信 → NORMAL mode

SHUTDOWN mode

SHUTDOWN modeでは、全ての動作が停止します。また、揮発性RAMの内容は失われます。全てのレジスタ値が失われます。

Mode遷移条件

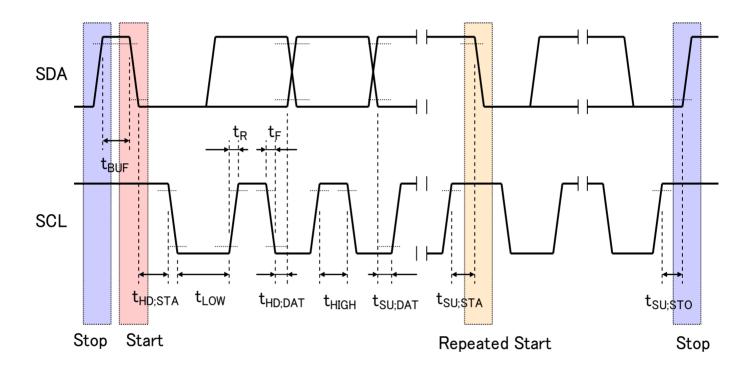
チップイネーブル端子の状態がHighの場合、 → NORMAL Mode via POR I2C通信で本ICのスレーブアドレス指定のコマンド入力

→ NORMAL Mode via POR

ALERT機能

Flags (*9)の状態に応じて、ホストに対してアラート割込みを出力できます。本割込み信号は ALERTに出力されます。(*9:後述のFlagsコマンドを参照)アラート割込みを発生させる条件、出力信号の選択、極性設定は、Data Flashで設定できます。

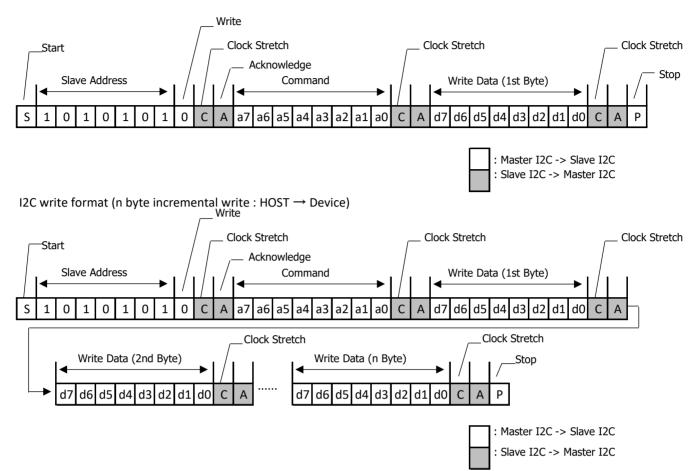
アラート割込みが発生すると、ALERTが Assertされます。 アラート割込みが発生した要因は、Flagsで確認できます。 アラート割り込み出力は、アラート要因が消失した時に解除されます。

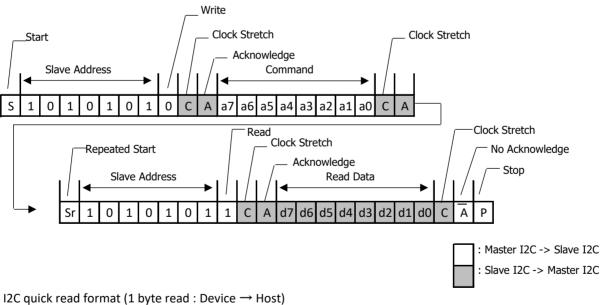


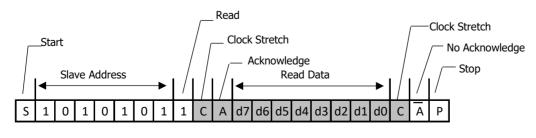
I2C 通信

本IC-MCU間の通信にはI2C通信を用います。 I2Cの仕様に準拠してデータ通信を行なってください。

タイミングチャート

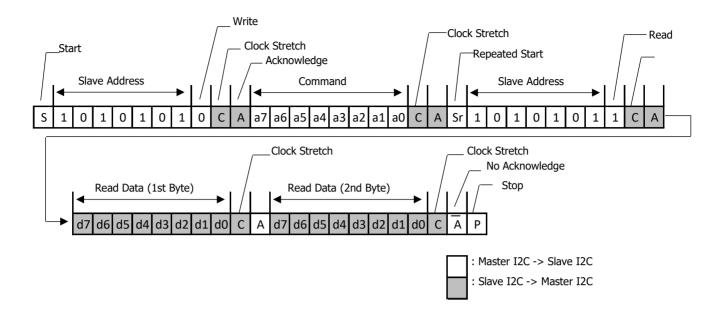

下図にI2C通信のタイミングチャートを示します。 図内の記号の値は電気的特性を参照下さい。




通信フォーマット

I2C write format (1 byte write : HOST → Device)

I2C read format (1 byte read : Device → Host)



Master I2C -> Slave I2C : Slave I2C -> Master I2C

I2C read format (n byte incremental read : Device → Host)

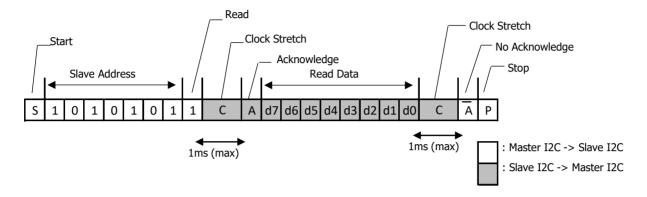
I2C デバイスアドレス

デバイスアドレスの初期値はAA/ABです。

デバイスアドレスは内蔵NVMに記録されており、電源投入時にロードされる仕組みとなっております。 このI2Cデバイスアドレスは、弊社量産工程でお客様希望のご指定頂いたアドレスを事前に書き込む事も可能です。

I2C タイムアウト

MM8118Wは、ホストと I2Cの通信中、ホストから応答が無い場合、またはバス権が保持され続けている場合、0.2秒(Default)でタイムアウトします。タイムアウト後は、通信中の Requestを Abortし、I2C受信待ちの状態になります。

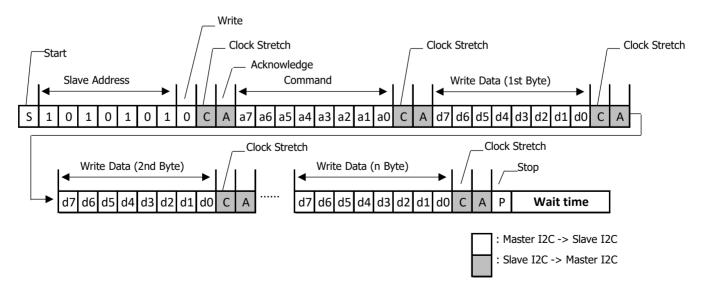

タイムアウト時間はMM8118W内蔵のNVMに設定が保持されており、変更が可能です。

I2C クロックストレッチ

MM8118WとホストのI2C通信にはクロックストレッチが必要となります。クロックストレッチされる期間は最大で1msとなります。

I2C quick read format (1 byte read : Device → Host)

I2C ウエイトタイム


MM8118Wは、I2C Write format完了後、次の通信を開始するまでにウエイト時間が必要な場合があります。 ("STOP"条件と"START"条件のバスフリー時間)

以下に示すコマンドの場合、ウエイト時間が長く必要となります。

Command List of Wait time

Code	Name	Wait time
0x00/0x01	Control (Reset request)	
0x60	Block Data Checksum	100msec
0x54	Authenticate Checksum	

I2C write format (n byte write : $HOST \rightarrow Device$)

もし、適切なウエイト時間無く、I2Cコマンドを送信した場合、MM8118は nack応答します。

コマンド概要

本ICでは、各種測定情報の取得、動作モードの設定など、以下に示すコマンドを使用して行います。

Standard Command List

Name	Code	R/W	Data size	Unit
Control	0x00/0x01	R/W	2	N/A
At Rate	0x02/0x03	R/W	2	mA (or 0.1mA)
Unfiltered SOC	0x04/0x05	R	2	%
Temperature	0x06/0x07	R	2	0.1K (or 0.1°C)
Voltage	0x08/0x09	R	2	mV
Flags	0x0A/0x0B	R	2	N/A
Nominal Available Capacity	0x0C/0x0D	R	2	mAh (or 0.1mAh)
Full Available Capacity	0x0E/0x0F	R	2	mAh (or 0.1mAh)
Remaining Capacity	0x10/0x11	R	2	mAh (or 0.1mAh)
Full Charge Capacity	0x12/0x13	R	2	mAh (or 0.1mAh)
Average Current	0x14/0x15	R	2	mA (or 0.1mA)
Average Time To Empty	0x16/0x17	R	2	minutes
Filtered FCC	0x18/0x19	R	2	mAh (or 0.1mAh)
Reserved	0x1A/0x1B	-	-	-
Unfiltered FCC	0x1C/0x1D	R	2	mAh (or 0.1mAh)
Max Load Current	0x1E/0x1F	R	2	mA (or 0.1mA)
Unfiltered RM	0x20/0x21	R	2	mAh (or 0.1mAh)
Filtered RM	0x22/0x23	R	2	mAh (or 0.1mAh)
BTP SOC1 Set	0x24/0x25	R/W	2	mAh (or 0.1mAh)
BTP SOC1 Clear	0x26/0x27	R/W	2	mAh (or 0.1mAh)
Internal Temperature	0x28/0x29	R	2	0.1K (or 0.1°C)
Cycle Count	0x2A/0x2B	R	2	Counts
State Of Charge	0x2C/0x2D	R	2	%
State Of Health	0x2E/0x2F	R	2	%
Charge Voltage	0x30/0x31	R	2	mV
Charge Current	0x32/0x33	R	2	mA (or 0.1mA)
Passed Charge	0x34/0x35	R	2	mAh (or 0.1mAh)
DOD0	0x36/0x37	R	2	N/A
Self Discharge Current	0x38/0x39	R	2	mA (or 0.1mA)

Extended Command List

Name	Code	R/W	Data size	Unit
Pack Config	0x3A/0x3B	R	2	N/A
Design Capacity	0x3C/0x3D	R	2	mAh (or 0.1mAh)
Data Flash Class	0x3E	R/W	1	N/A
Data Flash Block	0x3F	R/W	1	N/A
Block Data / Authenticate	0x40~0x53	R/W	20	N/A
Block Data / Authenticate Checksum	0x54	R/W	1	N/A
Block Data	0x55~0x5F	R/W	11	N/A
Block Data Checksum	0x60	R/W	1	N/A
Block Data Control	0x61	R/W	1	N/A
Product Information Length	0x62	R	1	N/A
Product Information	0x63~0x6C	R	10	N/A
FG Condition	0x6E/0x6F	R/W	2	N/A
Reserved	0x70/0x71	-	-	-
Current	0x72/0x73	R	2	mA (or 0.1mA)
Reserved	0x74~0x7F	-	-	-

標準コマンド詳細(Group1)

応答データのサイズが 2bytes(1word)のコマンドを以下に示します。

Unfiltered SOC [0x04/0x05]

このコマンドは、温度および放電電流値を基に使用可能なフィルタリングされていない満充電容量に対する 放電可能なフィルタリングされていない残容量の比率を返します。充電時、もしくは電流が発生していない場合は、定義された放電電流値(約0.2C)を基に比率を返します。

Data Type : unsigned integer

Unit : [%]

Temperature [0x06/0x07]

このコマンドは、外部サーミスタ入力より測定された温度情報、または本ICに内蔵された温度センサにより測定された温度情報を返します。

Data Type : signed integer

Unit : [0.1K] ([0.1°C] selectable by Data Flash setting)

Voltage [0x08/0x09]

このコマンドは電池、もしくは電池パックの電圧を返します。

Data Type : unsigned integer

Unit : [mV]

Nominal Available Capacity [0x0C/0x0D]

このコマンドは、電池の絶対残容量を返します。

絶対残容量は、標準の条件(0.2C放電、25°C)での残容量を示します。

Data Type : unsigned integer

Unit : [mAh] ([0.1mAh] selectable by Data Flash setting)

Full Available Capacity [0x0E/0x0F]

このコマンドは、満充電容量を返します。

満充電容量は、標準の条件(0.2C放電、25°C)でのフル容量を示します。

Data Type : unsigned integer

Unit : [mAh] ([0.1mAh] selectable by Data Flash setting)

Remaining Capacity [0x10/0x11]

このコマンドは、機能選択設定より返される残容量が決まります。

スムージング有効設定: Filtered RM valueスムージング無効設定: Unfiltered RM value

Data Type : unsigned integer

Unit : [mAh] ([0.1mAh] selectable by Data Flash setting)

Full Charge Capacity [0x12/0x13]

このコマンドは、機能選択設定より返される満充電容量が決まります。

スムージング有効設定: Filtered FCC valueスムージング無効設定: Unfiltered FCC value

Data Type : unsigned integer

Unit : [mAh] ([0.1mAh] selectable by Data Flash setting)

Average Current [0x14/0x15]

このコマンドは電池から流れる、または電池へ流れる電流の平均値を返します。

Data Type : signed integer

Unit : [mA] ([0.1mA] selectable by Data Flash setting)

Average Time To Empty [0x16/0x17]

このコマンドは、温度および平均電流値より稼働時間(使用可能時間)を返します。

電流が発生していない場合には、デフォルト放電電流で演算した値を、また、充電の場合には 65535を返します。

Data Type : unsigned integer

Unit : [minutes]

Filtered FCC [0x18/0x19]

このコマンドは、温度および放電電流値を基に放電可能なフィルタリングされた満充電容量を返します。

Data Type : unsigned integer

Unit : [mAh] ([0.1mAh] selectable by Data Flash setting)

Unfiltered FCC [0x1C/0x1D]

このコマンドは、温度および放電電流値を基に放電可能なフィルタリングされていない満充電容量を返します。

Data Type : unsigned integer

Unit : [mAh] ([0.1mAh] selectable by Data Flash setting)

Max Load Current [0x1E/0x1F]

このコマンドは、電池から流れる電流の最大値を返します。

Max Load Currentは、初期最大電流設定、もしくは最新更新値より大きい値を更新していきます。 また、満充電時に最新値と初期値の平均値へと再設定が行われます。

Data Type : signed integer

Unit : [mA] ([0.1mA] selectable by Data Flash setting)

Unfiltered RM [0x20/0x21]

このコマンドは、温度および放電電流値を基に放電可能なフィルタリングされていない残容量を返します。 充電時、もしくは電流が発生していない場合は、定義された放電電流値(約 0.2C)を基に残容量を返 します。

Data Type : unsigned integer

Unit : [mAh] ([0.1mAh] selectable by Data Flash setting)

Filtered RM [0x22/0x23]

このコマンドは、温度および放電電流値を基に放電可能なフィルタリングされた残容量を返します。 充電時、もしくは電流が発生していない場合は、定義された放電電流値(約 0.2C)を基に残容量を返 します。

Data Type : unsigned integer

Unit : [mAh] ([0.1mAh] selectable by Data Flash setting)

Internal Temperature [0x28/0x29]

このコマンドは本ICに内蔵された温度センサにより測定された温度情報を返します。

Data Type : signed integer

Unit : [0.1K] ($[0.1^{\circ}C]$ selectable by Data Flash setting)

Cycle Count [0x2A/0x2B]

このコマンドは、現在までの満充電回数を返します。

満充電回数は、積算充電容量が満充電容量に達した時点で1カウントアップされます。

Data Type : unsigned integer

Unit : [counts]

State Of Charge [0x2C/0x2D]

このコマンドは、温度および放電電流値を基に使用可能な満充電容量に対する放電可能な残容量の比率を返します。充電時、もしくは電流が発生していない場合は、定義された放電電流値(約 0.2C)を基に比率を返します。

Data Type : unsigned integer

Unit : [%]

State Of Health [0x2E/0x2F]

このコマンドは、電池の初期容量に対する現在の電池容量の比率を返します。

Data Type : unsigned integer

Unit : [%]

Passed Charge [0x34/0x35]

このコマンドは、放電後に実施されたOCVからの総充電容量を返します。

Data Type : unsigned integer

Unit : [mAh] ([0.1mAh] selectable by Data Flash setting)

DOD0 [0x36/0x37]

このコマンドは、最後に実施されたOCVの放電深度を返します。

Data Type : unsigned integer

Unit : N/A

Self Discharge Current [0x38/0x39]

このコマンドは、電池の自己放電電流を返します。

Data Type : signed integer

Unit : [mAh] ([0.1mAh] selectable by Data Flash setting)

Flags [0x0A/0x0B]

このコマンドは、電池状態/情報を返します。

バッテリの状態/情報は、下記のように各ビットに割り当てられています。

Battery status bit

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
Hi byte	ОТС	OTD	BATHI	BATLOW	CHG_INH	RSVD	FC	CHG
Lo byte	OCVTAKEN	OCC	ODC	OT	UT	SOC1	SOCF	DSG

OTC : 充電中の高温異常検出 電流が充電判定電流以上の状態において、

上限温度以上:1,復帰温度以下:0

OTD: 放電中の高温異常検出 電流が放電判定電流以下の状態において、

上限温度以上:1,復帰温度以下:0

BATHI: 過電圧(過充電)検出 上限電圧以上:1,復帰電圧以下:0

BATLOW: 過放電検出 下限電圧超過:1,復帰電圧以上:0

CHG_INH : 充電禁止検出 電流が充電判定電流以上の状態において、

充電禁止温度(上限/下限):1

充電許可温度範囲、または充電判定電流未満の時:0

SOC < 満充電解除 SOC閾値:0

*満充電検出条件

1) 電圧が満充電電圧以上である

2) 電流が充電終止電流未満である

3) 1), 2)の状態が、設定時間検出された

CHG : 充電許可 SOCが充電許可 SOC設定以下であり、

CHG_INH = 0の時:1

SOCが満充電解除 SOC設定より大きい、または

CHG_INH = 1の時:0

OCVTAKEN 残容量補正実施 OCVによる残容量補正を行った場合:1

OCVによる残容量補正が行われていない場合:0

OCC : 充電過電流検出 上限電流以上:1,復帰電流以下:0

ODC : 放電過電流検出 下限電流以下:1,復帰電流以上:0

OT : 高温異常検出 上限温度以上:1,復帰温度以下:0

UT : 低温異常検出 下限温度以下:1,復帰温度以上:0

SOC1 :機能選択により、以下のような状態を示します。

<残容量通知機能 = 有効>

SOC1検出(放電中) Remaining Capacity < SOC1 Setの閾値:1

Remaining Capacity > SOC1 Clearの閾値

: 1→0 or 0→1

SOC1検出(充電中) Remaining Capacity < SOC1 Setの閾値:1

Remaining Capacity > SOC1 Clearの閾値

: 1→0 or 0→1

*Set/Clear SOC1コマンドを受信:0

<残容量通知機能 = 無効>

SOC1検出 Remaining Capacity ≦ SOC1 Setの閾値: 1

Remaining Capacity \geq SOC1 Clearの閾値: 0

SOCF : SOC Final検出 Remaining Capacity \leq SOCF Set σ 閾値: 1

Remaining Capacity ≧ SOCF Clearの閾値: 0

DSG : 放電検出 放電時:1, 充電時, または 0mA時:0

標準コマンド詳細 (Group 2)

本ICに対し、パラメータデータなど送信・受信するコマンドを以下に示します。

Control [0x00/0x01]

このコマンドは、本ICの各種制御の設定、各種設定/情報の取得を実行します。 上記の設定は、コマンドに続く2bytesのパラメータにより行います。

Command Parameter

Control Command Parameter

	Name
Byte 0	Request Code Low Byte
Byte 1	Request Code Hi Byte

Receive Data

Control Data Format

	Name
Byte 0	Data Low Byte
Byte 1	Data Hi Byte

[Request code list]

Request code table

Request content code	Code	type	Description
CONTROL_STATUS	0x0000	R	status information
DEVICE_TYPE	0x0001	R	device type
FW_VERSION	0x0002	R	firmware version
HW_VERSION	0x0003	R	hardware version
RANK_CODE	0x0004	R	rank code information
PREV_MACWRITE	0x0007	R	previous MAC
CHEM_ID	0x0008	R	data flash ID (parameter ID)
DF_VERSION	0x000C	R	data flash revision (parameter rev.)
SET_SLEEP	0x0010	W	enable to change FULL SLEEP mode
SET_HIBERNATE	0x0011	W	enable to change HIBERNATE mode
CLEAR_HIBERNATE	0x0012	W	disable to change HIBERNATE mode
SET_SHUTDOWN	0x0013	W	enable to change SHUTDOWN mode
CLEAR_SHUTDOWN	0x0014	W	disable to change SHUTDOWN mode
OCV_CMD	0x001F	W	execute OCV correction
SEALED	0x0020	W	set SEALED access mode
IG_ENABLE	0x0021	W	enable device to normal FG operation mode
CAL_ENABLE	0x002D	W	set device to Calibration test mode
SET_LOCKTYPE	0x0040	W	set device Lock type
RESET	0x0041	W	reset device
EXIT_CAL	0x0080	W	stop device to measure Calibration
ENTER_CAL	0x0081	W	start device to measure Calibration

CONTROL_STATUS [0x0000]

この Request Codeは、本ICの各種状態情報を取得します。

CONTROL STATUS bit

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
Hi byte	RSVD	FAS	SS	CALMODE	RSVD	RSVD	QMAXUPDATE	RSVD
Lo byte	SHUTDOWN	HIBERNATE	FULLSLEEP	SLEEP	LDMD	DNR	VOK	QEN

FAS : FULL ACCESS SEALED Full Access Sealed (Data Flashの特定の領域が

state Read/Write禁止された)状態の時、setされる。

SS : SEALED / UNSEALED Sealed (Data Flashが Read/Write禁止された)状態の

state 時、setされる。

CALMODE : Calibration function Calibration機能が有効の時(CAL_ENABLE送信後)、

setされます。

QMAXUPDATE : QMAX update 電池容量更新を示します。更新されるたびに反転出力

します。

SHUTDOWN : SHUTDOWN function SHUTDOWN modeへ遷移することが許可された時、

setされる。

HIBERNATE : HIBERNATE function STANDBY modeへ遷移することが許可された時、

setされる。

FULLSLEEP : FULL SLEEP function FULL SLEEP modeへ遷移することが許可された時、

setされる。

SLEEP : SLEEP function 本ICが FULL SLEEP mode (or SLEEP mode)であること

を示します。

LDMD : Constant power/ 定電力モード :1

Constant current algorithm

DNR : Device not Ready FG動作モードが起動され、FGの情報が準備できるまで、

setされます。

以下のような場合、DNR = 1の状態から開始されます。

1) POR後、2) Standby modeから、Normal modeへ遷移後

Standby mode.

VOK : Voltage OK 電圧が安定と判断された時、setされます。

QEN : FG mode enable 通常の FG動作モードにある時、setされます。

(IG_ENABLE送信後)

DEVICE_TYPE [0x0001]

この Request Codeは、本ICのタイプ情報を取得します。本ICでは、"0x8118"の応答となります。

FW_VERSION [0x0002]

この Request Codeは、FWバージョン情報を取得します。

HW_VERSION [0x0003]

この Request Codeは、HWバージョン情報を取得します。本ICでは、"0x001C"の応答となります。

RANK CODE [0x0004]

この Request Codeは、モデルの Rankコード情報を取得します。本ICでは、"0x3257"(= 'W2') の応答となります。

PREV MACWRITE [0x0007]

この Request Codeは、前回 Controlコマンドに設定された値を取得します。

CHEM_ID [0x0008]

この Request Codeは、Data Flashに設定されている電池パラメータの ID情報を取得します。

DF_VERSION [0x000C]

この Request Codeは、Data Flashに設定されている電池パラメータのバージョン情報を取得します。

SET_SLEEP [0x0010]

この Request Codeは、本ICの動作モードを FULL SLEEP modeへ遷移することを許可します。

SET_HIBERNATE [0x0011]

この Request Codeは、本ICの動作モードを HIBERNATE modeへ遷移することを許可します。

CLEAR_HIBERNATE [0x0012]

この Request Codeは、本ICの動作モードを HIBERNATE modeへ遷移することを禁止します。

SET_SHUTDOWN [0x0013]

この Request Codeは、本ICの動作モードを SHUTDOWN modeへ遷移することを許可します。

CLEAR_HIBERNATE [0x0014]

この Request Codeは、本ICの動作モードを SHUTDOWN modeへ遷移することを禁止します。

OCV_CMD [0x001F]

この Request Codeは、測定された電圧にて OCV補正を行います。

SEALED [0x0020]

この Request Codeは、本ICを SEALED access modeに設定します。

IG_ENABLE [0x0021]

この Request Codeは、Intelligent Gaugeアルゴリズムを有効に設定します。また、この Requestは、UNSEALED状態の時のみ有効となります。

CAL_ENABLE [0x002D]

この Request Codeは、本ICが通常 FG動作モードの場合、Calibration動作モードへ設定し、Calibration動作モードの場合、通常の FG動作モードへ設定します。 また、この Requestは、UNSEALED状態の時のみ有効となります。

SET_LOCKTYPE [0x0040]

この Request Codeは、本ICの Lock Type値を取得します。

RESET [0x0041]

この Request Codeは、本ICを resetします。また、この Requestは、UNSEALED状態の時のみ有効となります。

EXIT_CAL [0x0080]

この Request Codeは、Calibration動作モードの場合に Calibration処理を停止します。また、この Requestは、UNSEALED状態の時のみ有効となります。

ENTER_CAL [0x0081]

この Request Codeは、Calibration動作モードの場合に Calibration処理を開始します。 また、この Requestは、UNSEALED状態の時のみ有効となります。

At Rate [0x02/0x03]

このコマンドは、温度および電流値より稼働時間(使用可能時間)を算出するための電流値を設定します。 このコマンドで指定された電流値から算出される稼働時間は、At Rate Time To Empty [0x04/0x05] コマンドで取得できます。

Command Parameter

Data Type : signed integer

Unit : [mA] ([0.1mA] selectable by Data Flash setting)

Receive Data

Data Type : signed integer

Unit : [mA] ([0.1mA] selectable by Data Flash setting)

BTP SOC1 Set [0x24/0x25]

このコマンドは、残容量通知機能の放電時の残容量閾値を設定します。 残容量通知機能が有効な場合、この設定閾値を下回った時に割込みが発生します。 また、このコマンドに設定を行うことで、割込み信号、ステータスフラグがクリアされます。

Command Parameter / Receive Data

Data Type : unsigned integer

Unit : [mAh] ([0.1mAh] selectable by Data Flash setting)

BTP SOC1 Clear [0x26/0x27]

このコマンドは、残容量通知機能の充電時の残容量閾値を設定します。 残容量通知機能が有効な場合、この設定閾値を上回った時に割込みが発生します。 また、このコマンドに設定を行うことで、割込み信号、ステータスフラグがクリアされます。

Command Parameter / Receive Data

Data Type : unsigned integer

Unit : [mAh] ([0.1mAh] selectable by Data Flash setting)

拡張コマンド詳細 (Group 3)

応答データのサイズが複数bytesのコマンドを以下に示します。

Pack Config [0x3A/0x3B]

このコマンドは、本ICの選択可能な機能設定の情報を取得します。 それぞれの選択可能な設定は、下記のように各ビットに割り当てられています。

Pack Config bit

	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
Hi byte	RSVD	INTPol	INTSel	RSVD	RSVD	RSVD	RSVD	CRESO
Lo byte	RSVD	RSVD	SLEEP	RSVD	RSVD	RSVD	RSVD	TEMPS

INTPol : Interrupt信号の出力極性 Low Active : 0, High Active : 1

INTSel : Interrupt信号の選択 SE pin :0, HDQ pin :1

CRESO : 電流、容量の単位選択 1mA, 1mAh:0, 0.1mA, 0.1mAh:1

SLEEP : SLEEP機能 Sleep function enable:1

Sleep function disable:0

TEMPS : Thermistor測定の対応 Thermistor enable:1, Thermistor disable:0

Design Capacity [0x3C/0x3D]

このコマンドは、電池の仕様容量を返します。

Data Type : unsigned integer

Unit : [mAh]

Product Information Length [0x62]

このコマンドは、Product情報のデータの長さを返します。

Data Type : unsigned char

Unit : N/A

Product Information [0x63~0x6C]

このコマンドは、Productの情報を返します。 情報データは、バイナリ 10bytesとなります。

Product Information Format

Name	Size
Device Model Name	8bytes
Reserved	2bytes

Current [0x72/0x73]

このコマンドは電池から流れる、または電池へ流れる測定電流値を返します。

Data Type : signed integer

Unit : [mA] ([0.1mA] selectable by Data Flash setting)

拡張コマンド詳細 (Group 4)

本ICに対し、パラメータデータなど送信・受信するコマンドを以下に示します。

Data Flash Class [0x3E]

このコマンドは、各種初期設定情報、電池依存パラメータ情報を Data Flashより読み出す、または Data Flash へ書き込む際の data flash classを指定します。SEALED stateの場合、Access拒否されます。

Data Flash Block [0x3F]

このコマンドは、各種初期設定情報、電池依存パラメータ情報を Data Flashより読み出す、または Data Flash へ書き込む際の data flash blockを指定します。

本ICでは、UNSEALED stateの場合、0x00設定のみとなり、0x00以外の値に設定することはありません。

SEALED stateの場合、特定の用途のための設定のみ許可されます。

0x00: 認証データの設定

0x01 - 0x03: Manufacture Data A - Cのデータ取得

Block Data [0x40~0x5F]

この 32bytesのメモリ空間は、SEALED/UNSEALED stateの状態と、Data Flash Class [0x3E]、Data Flash Block [0x3F]、Block Data Control [0x61]コマンドの設定により、様々な目的に使用されます。

[UNSEALED state]

Block Data Control [0x61] = 0x00:

この領域は、指定された data flash class/blockより、各種初期設定情報、電池依存パラメータ情報を設定、取得するために使用されます。

Block Data Control $[0x61] \neq 0x00$:

この領域は、認証データを設定するために使用されます。

[SEALED state]

Data Flash Block [0x3F] = 0x00:

この領域は、認証データを設定するために使用されます。

Data Flash Block [0x3F] = 0x01 - 0x03:

この領域は、Manufacture Data A、B、Cのデータ取得に使用されます。メモリ空間の32bytesが有効です。

<認証データに使用される場合>

この領域は、認証データに使用される場合、以下のような定義に割り当てられます。

Authenticate [0x40~0x53]

この領域は、認証データに使用されます。

Authenticate Checksum [0x54]

このコマンドは、20bytesの認証データの Checksumです。Writeすることで認証が実行されます。

Reserved [0x55~0x5F]

この領域は、使用されません。

Block Data Checksum [0x60]

このコマンドは、32bytesの Block Dataの Checksumです。Readの場合、Class/Blockが設定された時点で更新されます。Writeの場合、最新の Checksum結果へ更新することで、Data Flashへの保存を実施します。SEALED stateの場合、Access拒否されます。

Block Data Control [0x61]

このコマンドは、Data Flashの Modeを設定します。SEALED stateの場合、Access拒否されます。

0x00 : data flash class/blockの指定により、各種初期設定情報、電池依存パラメータ情報を設

定、取得する Data Flash Accessモードになります。

other: 認証モードになります。

FG Condition [0x6E/0x6F]

このコマンドは、現在の動作モードの取得、または、動作モード設定、及び 補正処理などを実行します。

Command Parameter

FG Condition Command Parameter

	Name
Byte 0	Request code
Byte 1	Parameter

Receive Data

FG Condition Data Format

	Name					
Byte 0	Operational mode					
Byte 1	reserved					

[Request code]

<Execute code>

0x00 : NORMAL mode
0x01 : SLEEP mode
0x02 : SHUTDOWN mode
0x03 : STANDBY mode
0x04 : FULL SLEEP mode

0x20 : OCV correction (by measured Voltage)
 0x21 : OCV correction (by Average Voltage)
 0x40 : Lock Level (with parameter byte)

0x80 : System Reset request (It is valid in UNSEALED state only.)

[Operational mode]

0x00 : NORMAL mode 0x01 : SLEEP mode

0x02 or 0x03 : FULL SLEEP mode

0x04 : STANDBY mode

データフラッシュ

データ フラッシュ概要

最小値、最大値、デフォルトを含むユーザーが利用できるデータ・フラッシュの場所を要約します。

SEALED stateの場合、Manufacture A/B/C領域のみが Read可能となります。
Security以外のその他の Category領域は、UNSEALED stateの場合に Read/Write可能となります。
Security領域は、FULL ACCESS stateの時のみ Read/Write可能となります。

Data Flash List

Group	Category	Class	Offset	Name	Data Type	Min value	Max Value	Default Value	Unit
Configuration	Data	0x00	0x00~01	Rank Code	Cbyte	- value	- value	"W2"	-
coga. ado	Duta	ONOU	0x02	FW Version	Hword	0x0	0xffff	0x0100	-
			0x04	Parameter Version	Hword	0x0	0xffff	0x0100	-
			0x06	Mask FW Parameter Version	Hword	0x0	0xffff	0x0100	-
			0x08~0f	Pack Name	Cbyte	-	-	-	-
			0x10	Pack ID	Hword	0x0	0xffff	0x0	-
			0x12	Pack sub ID	Hword	0x0	0xffff	0x0	-
	System	0x01	0x08	PackConfigA	Hword	0x0	0xffff	0x0	-
			0x0a	PackConfigB	Hbyte	0x0	0xff	0x0	-
			0x0b	PackConfigC	Hbyte	0x0	0xff	0x0	-
			0x0c	PackConfigD	Hbyte	0x0	0xff	0x0	-
			0x0d	PackConfigE	Hbyte	0x0	0xff	0x0	-
			0x0e	PackConfigF	Hbyte	0x0	0xff	0x0	-
			0x0f	PackConfigG	Hbyte	0x0	0xff	0x0	-
			0x10	Design Voltage	Uword	0	65535	3700	mV
			0x12	Design Capacity	Uword	0	65535	2420	mAh
			0x14	MaxLoad Default	Sword	-32768	32767	-500	mA
			0x16	CycleCount Default	Uword	0	65535	0	num
	Charge	0x02	0x10	Fullcharge Detect Voltage	Uword	0	65535	4350	mV
	Term		0x12	Fullcharge Detect Voltage Window	Uword	0	65535	50	mV
			0x14	Fullcharge Detect Current	Uword	0	65535	100	mA
			0x16	Fullcharge Detect Time	Ubyte	0	255	60	sec
			0x17	Fullcharge Detect Current Window	Ubyte	0	255	10	mA
	Discharge	0x02	0x18	Lower limit voltage	Uword	0	65535	3400	mV
	Term		0x1a	Force SOC 0% Voltage	Uword	0	65535	2750	mV
	Current	0x03	0x11	Sleep detection time	Ubyte	0	255	60	sec
			0x12	Sleep mode Interval	Ubyte	0	255	20	sec
	Capacity	0x04	0x00	Initial capacity	Uword	0	65535	2450	mAh
	Safety	0x05	0x00	SOC1 set threhold	Uword	0	65535	245	mAh
			0x02	SOC1 clear threhold	Uword	0	65535	367	mAh
			0x04	SOCF set threhold	Uword	0	65535	74	mAh
			0x06	SOCF clear threhold	Uword	0	65535	184	mAh
			0x08	Full charge flag clear threshold	Ubyte	0	255	98	%
			0x09	CHG flag set threshold	Ubyte	0	255	95	%
			0x0a	Charge Inhibit Low Limit Temperature	Sword	-32768	32767	-50	0.1°C
			0x0c	Charge Inhibit Hi Limit Temperature	Sword	-32768	32767	500	0.1°C
			0x0e	Charge Inhibit Hysteresis	Sbyte	-128	127	50	0.1°C
			0x10	Alert IO Enable	Hword	0x0	0xffff	0x0	-
			0x12	Battery Low-voltage detection	Uword	0	65535	2950	mV
			0x14	Battery Low-voltage recovery	Uword	0	65535	3100	mV
			0x16	Battery Low-voltage delay time	Ubyte	0	255	2	sec
			0x17	Battery Hi-voltage delay time	Ubyte	0	255	2	sec
			0x18	Battery Hi-voltage detection	Uword	0	65535	4400	mV
			0x1a	Battery Hi-voltage recovery	Uword	0	65535	4300	mV
			0x1c	Discharge current	Sword	-32768	32767	-10	mA
			0x1e	Charge current	Sword	-32768	32767	10	mA

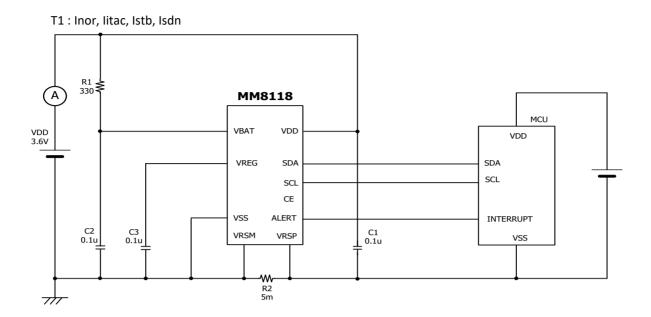
Data Flash List

Group	Category	Class	Offset	Name	Data Type	Min value	Max Value	Default Value	Unit
Configuration	Safety	0x06	0x00	Hi-temperature in discharge detection	Sword	-32768	32767	600	0.1°C
g	54.50	0,100	0x02	Hi-temperature in discharge recovery	Sword	-32768	32767	550	0.1°C
			0x04	Hi-temperature in discharge delay time	Ubyte	0	255	2	sec
			0x05	Hi-temperature in charge delay time	Ubyte	0	255	2	sec
			0x06	Hi-temperature in charge detection	Sword	-32768	32767	550	0.1°C
			0x08	Hi-temperature in charge recovery	Sword	-32768	32767	500	0.1℃
			0x0a	Over-discharge current detection	Sword	-32768	32767	-3000	mA
			0x0c	Over-discharge current recovery	Sword	-32768	32767	-2000	mA
			0x0e	Over-discharge current delay time	Ubyte	0	255	2	sec
			0x0f	Over-charge current delay time	Ubyte	0	255	2	sec
			0x10	Over-charge current detection	Sword	-32768	32767	3000	mA
			0x12	Over-charge current recovery	Sword	-32768	32767	2000	mA
			0x14	Under-temperature detection	Sword	-32768	32767	-200	0.1°C
			0x16	Under-temperature recovery	Sword	-32768	32767	-150	0.1°C
			0x18	Under-temperature delay time	Ubyte	0	255	2	sec
			0x19	Over-temperature delay time	Ubyte	0	255	2	sec
			0x1a	Over-temperature detection	Sword	-32768	32767	600	0.1°C
			0x1c	Over-temperature recovery	Sword	-32768	32767	550	0.1°C
		0x07	0x00	System shutdown voltage detection	Uword	0	65535	2400	mV
			0x02	System shutdown voltage recovery	Uword	0	65535	2500	mV
			0x04	System shutdown voltage delay time	Ubyte	0	255	8	sec
			0x05	SOH TDD threshold	Ubyte	0	255	75	%
			0x06	Under-voltage detection	Uword	0	65535	2850	mV
			0x08	Under-voltage recovery	Uword	0	65535	3000	mV
			0x0a	Under-voltage delay time	Ubyte	0	255	5	sec
			0x0b	Over-voltage delay time	Ubyte	0	255	5	sec
			0x0c	Over-voltage detection	Uword	0	65535	4500	mV
			0x0e	Over-voltage recovery	Uword	0	65535	4350	mV
Security	Codes	0x0a	0x00	Seal to Unseal code[0]	Hword	0x0	0xffff	0x1234	-
			0x02	Seal to Unseal code[1]	Hword	0x0	0xffff	0x5678	-
LogInfo	LogInfo	0x0b	0x00	Max Voltage initial value	Uword	0	65535	2900	mV
			0x02	Min Voltage initial value	Uword	0	65535	4450	mV
			0x04	Update difference Voltage	Ubyte	0	255	20	mV
			0x05	Update difference Current	Ubyte	0	255	50	mA
			0x06	Max Current initial value	Sword	-32768	32767	0	mA
			0x08	Min Current initial value	Sword	-32768	32767	0	mA
			0x0a	Max Temperature initial value	Sword	-32768	32767	150	0.1°C
			0x0c	Min Temperature initial value	Sword	-32768	32767	350	0.1°C
			0x0e	Update difference Temperature	Ubyte	0	255	50	0.1°C
TUMALI	TUNAtable	00-	0x0f	Update minimum interval	Ubyte	0	255	20	sec
THMtable	THMtable	0x0c	0x00~0f	Thermistor input threshold[0] - [7]	Sword	-32768	32767	-	-
		004	0x10~1f	Thermistor coefficient[0][0] - [2][1]	Sword	-32768	32767	-	-
		0x0d	0x00~1f	Thermistor coefficient[2][2] - [7][2] Thermistor shift coefficient[0] - [2]	Sword	-32768	32767	-	-
		0x0e	0x00~02 0x03	Thermistor shirt coemicient(0) - [2] Thermistor function setting	Ubyte Hbyte	0 0x0	255 0xff	0xff	-
OCV	OCV	0x14	0x03 0x12	NoOcvVoltage	Uword	0	65535	0	mV
OCV	OCV	0714	0x12 0x14	NoOcvVoltage NoOcvVoltRange	Ubyte	0	255	0	mV
	RCAP	0x15	0x14 0x05	Rcap correction threshold	Ubyte	0	255	5	%
	NCAF	0713	0x05 0x0e	Force Rcap correction threshold	Ubyte	0	255	80	% %
	OCVtable	0x18	0x00~1f	OcvTable[0] - [15]	Uword	0	65535	-	mV
	OCVIADE	0x18	0x00~11 0x00~07	OcvTable[0] - [15] OcvTable[16] - [19]	Uword	0	65535	-	mV
		UXIJ	0x08~1f	OcvSoc[0] - [11]	Hword	0x0	0xffff	-	-
		0x1a	0x00~0f	OcvSoc[12] - [19]	Hword	0x0	0xffff	_	_
Lifetime	Lifetime	0x1a	0x00	MaxVoltage	Uword	0	65535	-	mV
LICUITE	LIICHIIC	0.70	0x00	MinVoltage	Uword	0	65535	-	mV
			0x04	BatHiAlertCount	Ubyte	0	255	_	count
			0x05	BatLoAlertCount	Ubyte	0	255	-	count
			0x06	MaxCurrent	Sword	-32768	32767	_	mA
			0x08	MinCurrent	Sword	-32768	32767	-	mA
			0x0a	OverChgCurrCount	Ubyte	0	255	_	count
			0x0b	OverDsgCurrCount	Ubyte	0	255	-	count
			0x0c	MaxTemperature	Sword	-32768	32767	-	0.1°C
			0x0e	MinTemperature	Sword	-32768	32767	_	0.1°C
	l	l	OVOC						
			0x10	OverTempCount	Ubyte	0	255	-	count

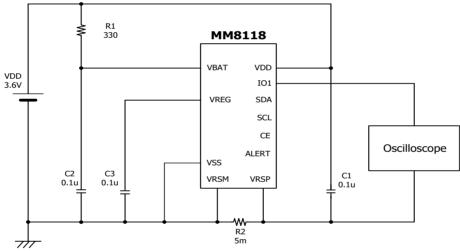
Data Flash List

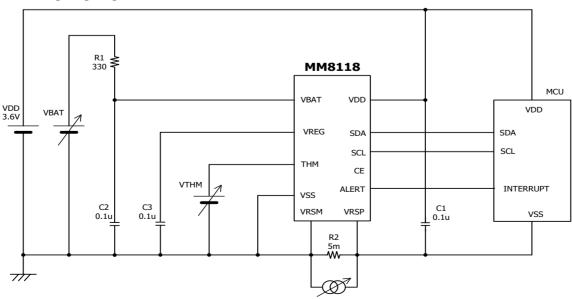
Group	Category	Class	Offset	Name	Data Type	Min value	Max Value	Default Value	Unit
User	User Calib	0xf0	0x00	Correction Factor Flag	Hword	0x0	0xffff	0xffff	-
Calibration			0x06	T-Gain	Sbyte	-128	127	-1	-
			0x07	T-Offset	Sbyte	-128	127	-1	-
			0x08	THM-Gain	Sbyte	-128	127	-1	
			0x09	THM-Offset	Sbyte	-128	127	-1	-
			0x0a	I-Gain	Sword	-32768	32767	-1	-
			0x0c	I-Offset	Sword	-32768	32767	-1	-
			0x0e	V-Gain	Sword	-32768	32767	-1	-
			0x12	V-Offset	Sword	-32768	32767	-1	-
User NVM	Manufacture	0xf1	0x00~1f	ManufactureA[0] - [31]	Hbyte	0x0	0xff	0xff	-
		0xf2	0x00~1f	ManufactureB[0] - [31]	Hbyte	0x0	0xff	0xff	-
		0xf3	0x00~1f	ManufactureC[0] - [31]	Hbyte	0x0	0xff	0xff	-

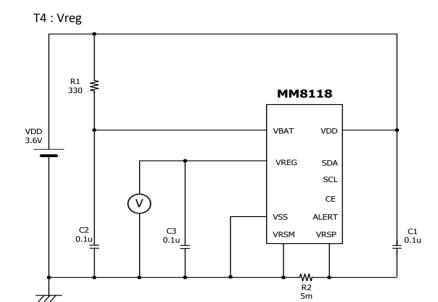
Access mode

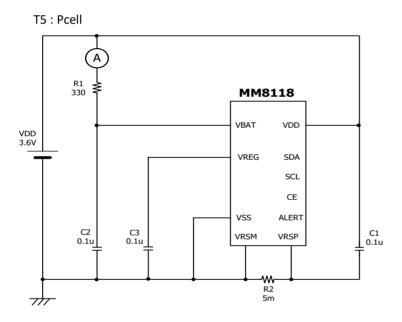

本 ICでは、内蔵メモリへのアクセス許可を制御するために 3つのセキュリティモードを提供しております。

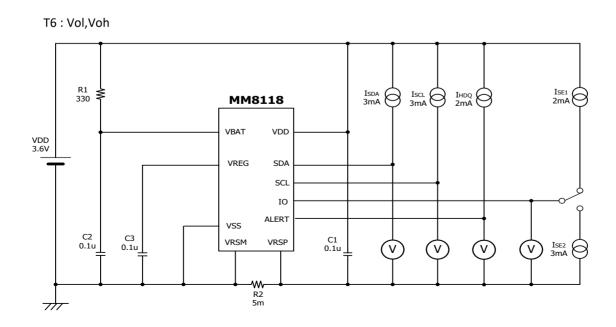
Data Flash Access


Security mode	Manufacture A/B/C	Data Flash	Security
SEALED	Read	None	None
UNSEALED	Read/Write	Read/Write	None
FULL ACCESS	Read/Write	Read/Write	Read/Write

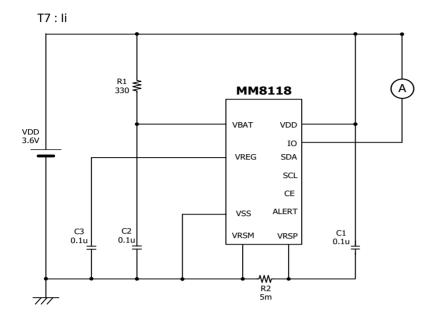

測定回路図

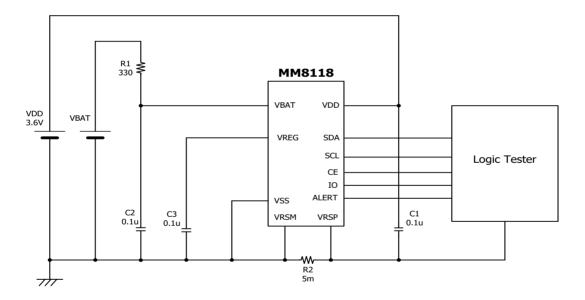



T3: Irng,Vrng,Trng

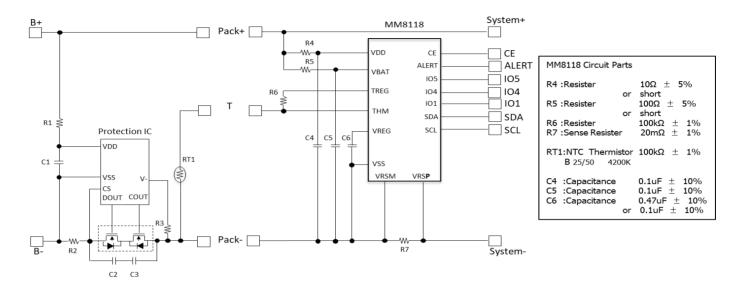


測定回路図



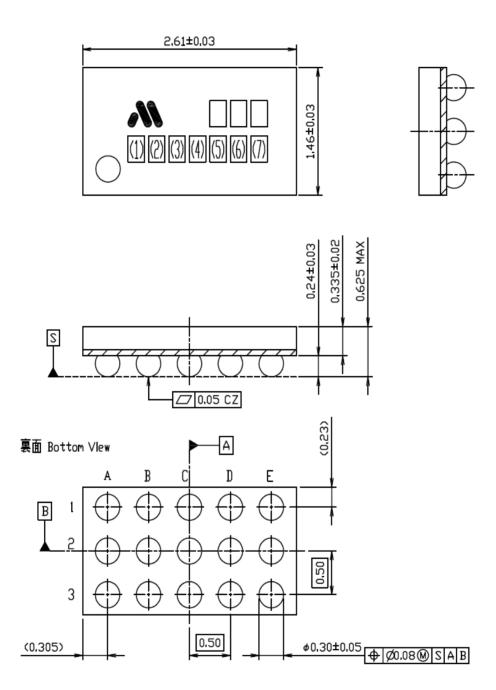


測定回路図


T8: Digital test

応用回路例

システム側搭載例



外形図

PACKAGE: WLCSP-15A

UNIT mm

付帯事項

【安全上の注意事項】

- ・当社は品質、信頼性の向上に努めていますが、半導体製品は一般に誤動作又は故障する場合があります。本製品をご使用いただく場合は、本製品の誤動作や故障により人命や身体が侵害または財産が損害されることのないように、お客様の責任において、お客様のハードウェア・ソフトウェア・システムに必要な安全設計を行うことをお願いいたします。なお、設計および使用に際しては、本製品に関する最新の情報(製品仕様書、データシート、アプリケーションノートなど)および本製品が使用される機器の取扱説明書、操作説明書などをご確認のうえ、これに従ってください。また、上記資料などに記載の製品データ、図、表などに示す技術的な内容、プログラム、アルゴリズムその他応用回路例などの情報を使用する場合は、本製品単独、およびシステム全体で十分に評価し、お客様の責任において適用可否を判断してください。当社は適用可否に対する責任は負いません。
- ・本製品はコンピュータ・OA機器・通信機器・計測機器・工作機械・産業用ロボット・AV機器・家電等、一般電子機器に使用されることを意図しております。
- ・輸送機器(自動車・列車等)の制御と安全性に係わるユニット・交通信号機器・防災/防犯装置等にご使用をお考えの際は、事前に当社販売窓口までご連絡いただきますようお願いいたします。
- ・ 航空宇宙機器・海底中継機器・原子力制御機器・人命に係わる医療機器等にはご使用にならないでください。
- 上記に該当しない場合でも、ご使用の用途、目的及び使用環境やリスク、またこれらに対応した設計、検査仕様などについて、特段の注意を要する事柄がある場合には事前にご提示くださいますようお願いいたします。
- お客様の損害が本製品の不良によるものと客観的に認められた場合は当社の責任とし、当社が負う責任および費用の負担は、本製品単体の納入金額に限定されるものといたします。

【応用回路、外付け回路、ご使用上の注意事項】

- . 本仕様書に記載されている動作概要は、集積回路の標準的な動作や使い方を説明するためのものです。従って、実際に本製品を使用される場合には、外部諸条件を考慮のうえ回路・実装設計をしてください。
- ・ご使用にあたってはご使用製品に実装、組込みされた状態で、ご評価および確認をお願いいたします。
- 製品に過渡的な負荷が印加される場合や外来ノイズの影響等につきましてはご使用製品に実装組込みされた状態で、ご評価および確認をお願いいたします。
- . ご使用上、いかなる場合においても最大定格を超えて使用しますと、製品の破壊や寿命に影響する事がありますので、必ず最大定格以内でご使用ください。
- ・本製品の使用条件(使用温度/電流/電圧等)が絶対最大定格/動作範囲内での使用においても、高負荷(高温および大電流/高電圧印加、多大な温度変化等)で連続して使用される場合は、信頼性が著しく低下するおそれがあります。当社の個別信頼性資料(信頼性試験レポート、推定故障率等)をご確認のうえ、使用温度や設計寿命に応じ、許容損失や使用電圧を考慮し、適切な信頼性設計をお願いいたします。

【輸出関連法規についての注意事項】

・輸送機器(自動車・列車等)の制御と安全性に係わるユニット・交通信号機器・防災/防犯装置等にご使用を お考えの際は、事前に当社販売窓口までご連絡いただきますようお願いいたします。

【取り扱い上の注意】

・本製品は一般電子機器に標準的な用途で使用されることを意図して設計・製造されており、下記のような特殊環境での使用を配慮した設計はなされておりません。従いまして、下記環境でのご使用及び保管は本製品の性能に影響を与える恐れがありますので、お客様におかれましては十分に性能、信頼性等をご確認のうえご使用ください。

静電気や電磁波の強い環境

- 高温及び高湿環境、結露する環境
- ・ 本製品は、耐放射線設計をしておりません。放射線のストレスを受ける環境でのご使用は避けてください。
- ・本仕様書は和文と英文で作成されておりますが、英文での内容に疑義が生じた場合は和文を優先するものといたします。