電池残量表示用

Monolithic IC MM1206

概要

本ICは、電池電圧を検出し、電池の残量を表示(LED、LCD)させることのできるICです。電池駆動の機器は、ポータブルであることが最大の魅力ですが、電池の残量がなくては本来の性能が発揮できないばかりか、消費者からの苦情や故障の原因にもなりかねません。

本ICにより、それらのトラブルを未然に防止します。

特長

- (1)電池容量をFULL/MIDDLE/EMPTYの3段階表示
- (2)マンガン電池2本に適合した検出電圧を9パターン内蔵標準設定:2.5V、2.25V
- (3)外付け部品が少ない。

パッケージ

SOP-8D(MM1206XF) VSOP-8A(MM1206AF)

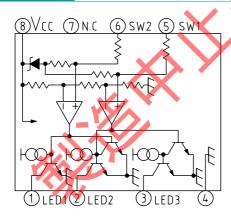
検出電圧 マトリックス表

			4
SW1	SW2	検出電圧1	検出電圧 2
GND	GND	2.64V	2.35 V
GND	オープン	2.62V	2.27V
GND	Vcc	2.60V	2.18V
オープン	GND	2.52V	2.35V
オープン	オープン	2.50V	2.25V
オープン	Vcc	2.48V	2.17V
Vcc	GND	2.42V	2.30 V
Vcc	オープン	2.40V	2.24V
Vcc	Vcc	2.38V	2.15V

電圧精度

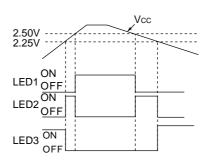
検出電圧1: ±100mV typ. 検出電圧2: ±90mV typ.

最大定格 (Ta

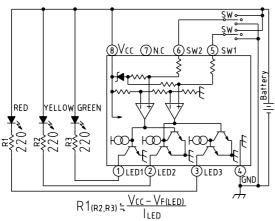

ıa	=	25)

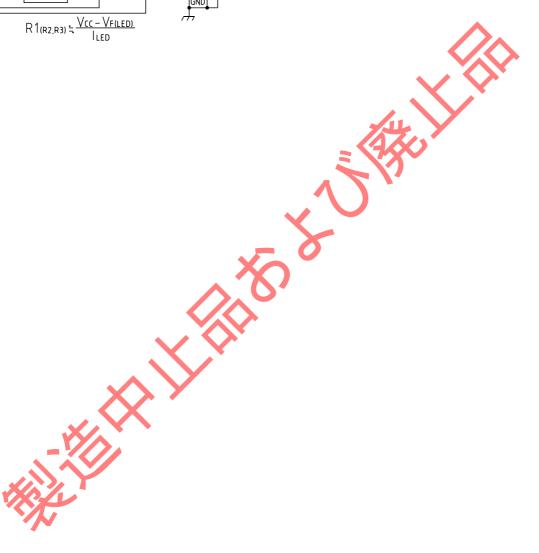
保存温度	- 40 ~ + 125		
動作温度	- 20 ~ + 70		
入力電圧	5V		
許容損失	300mW		

電気的特性 (特記なき場合Ta=25 、SW:1=SW:2=オープンとする)


項目	記号	測定条件	最小	標準	最大	単位
消費電流 1	Icc	Vcc=3.0V		0.75	1.1	mA
検出電圧 1	Vтн1	Vcc=H L	2.4	2.5	2.6	V
検出電圧 2	Vтн2	Vcc=H L	2.16	2.25	2.34	V
検出電圧差	Vт	Vт=Vтн1 - Vтн2	210	250	290	mV
検出電圧温度係数	Vтн/ Т			± 200		ppm/
検出電圧 調整 1	+ V⊤1	SW1=GND	70	100	130	mV
検出電圧 調整 2	- V⊤1	SW1=Vcc	- 70	- 100	- 130	mV
検出電圧 調整 1	+ V⊤2	SW2=GND	70	100	130	mV
検出電圧 調整 2	- V⊤2	SW2=Vcc	- 70	- 100	- 130	mV
出力シンク電流 1	Is1	Vcc=2.7V, VcE=0.5V	5	10		mΑ
出力シンク電流 2	Is2	Vcc=2.38V, VcE=0.5V	5	10		mΑ
出力シンク電流 3	Is3	Vcc=2.0V, VcE=0.5V	5	10		mA
出力飽和電圧 1	Vce1	Vcc=2.7V, Isink=1mA		100	150	mV
出力飽和電圧 2	Vce2	Vcc=2.38V, Isınк=1mA		100	150	mV
出力飽和電圧3	Vce3	Vcc=2.0V, Isink=1mA		50	80	mV
出力リーク電流 1	ILE1	Vcc=2.3V, Vc==1.5V			1	μΑ
出力リーク電流 2	ILE2	Vcc=2.7V, VcE=1.5V			1	μΑ
出力リ ーク電流 2	ILE2'	Vcc=2.0V VcE=1.5V			1	μΑ
出力リ ーク電流 3	ILE3	Vcc=2.5V, VcE=1.5V			1	μΑ

ブロック図




	2.5	50V 2.2	25V
LED1	L	Н	Н
LED2	Н	L	Н
LED3	Н	Н	L

タイミングチャート

応用回路例

